You're a legend, dude. I'm relearning this subject right now on my own.
@JasonOvalles4 жыл бұрын
Ditto. I started going through this on my own about two weeks ago. These videos came in at just the right time. Best math teacher ever!
@quasar7924 жыл бұрын
@@JasonOvalles Hey, may I ask how is it going? And what textbook are you using for self-study? I'm also going through some introductory analysis (using Stephen Abbott's wonderful book).
@JasonOvalles4 жыл бұрын
@@quasar792 Using that same book. It's going really slowly, but I don't mind. I'm taking my time to make sure I feel comfortable with each section before moving on.
@tomatrix75253 жыл бұрын
@@JasonOvalles was thinking of picking up that book, have you finished it by now? Any thoughts or recommendations would be appreciated, thanks
@JasonOvalles3 жыл бұрын
@@tomatrix7525 it's going very slowly. But not because of the book, I'm just pretty busy. The book itself is pretty well written. Professor Penn's videos help a lot. It's also such a popular book, that it's pretty easy to find solutions online to check my work. Here's what I usually do: one week, I'll read a section. During this week, I try to do the proofs myself. Often times, I can't and I'll go to the book or these videos for a hint. Or two. Or three. The next week, I'll do some of the exercises in that section. I choose the exercises based on what I can find solutions for. That way, if I'm stuck I can get hints and at the end, I can check my work. Then, if I feel comfortable, the next week, I move on to the next section.
@Blure4 жыл бұрын
I'm learning real analysis on my own, your videos are incredibly helpful!
@chessematics Жыл бұрын
Me too
@JohnWick-xd5zu4 жыл бұрын
This channel is pure gold!!! Thank you prof. Penn
@abdulrahmansaber17684 жыл бұрын
منور يسطا واضح اني مش انا لوحدي هنا xD
@newkid98074 жыл бұрын
John Wick Egypt numbah one!
@hassan.aladawy4 жыл бұрын
منورين يا رجالة
@ChristinaWahlquist-h5z9 күн бұрын
Thank you! I'm passing my Intro to Analysis thanks to KZbin videos like yours!
@andrewcoakley90284 жыл бұрын
Wow thank you! Currently taking a real analysis class and this was the clearest and most concise explanation that I've heard on this topic. Cheers.
@PunmasterSTP2 жыл бұрын
How did your real analysis class go?
@iridium85624 жыл бұрын
this is amazing, this is by far the most underrated math channel on youtube, i am still pretty young but i am passionate about mathematics, and this channel has helped me alot, thank you so much for this.
@tomatrix75253 жыл бұрын
I am learning Real Analysis on my own and this is really good. Thanks so much because otherwise I’d be sort of astray with no clear path
@robson15664 жыл бұрын
I've just found your channel, and man, it is a blessing! Keep up this amazing work!
@thobilesikakane61134 жыл бұрын
Very good detailed and to the point. Thank you so much. Saved me hours of non-productive studying.
@dozenazer18114 жыл бұрын
You’re just in time. I’ve just learned that thing on calculus. Thank you so much for the proof.
@GnarGnaw4 жыл бұрын
Supremum, or sometimes we call it *soup*
@Sorya-gf7qw2 жыл бұрын
😂😂
@movierecaps4856 Жыл бұрын
***sup
@mgmartin51 Жыл бұрын
No soup for you.
@ronycb71686 ай бұрын
@@mgmartin51 That means I shall grow without bounds toward +infinity for sure
@silversky2164 жыл бұрын
so blessed to find you at the start of my real analysis course
@PunmasterSTP2 жыл бұрын
I came across your comment and I'm just curious; how did your real analysis course go?
@silversky2162 жыл бұрын
@@PunmasterSTP Overall good. The examination was online so I managed to score really good. At the end of the day your course will highly depend on your Professor...So that's that.
@PunmasterSTP2 жыл бұрын
@@silversky216 Yeah I totally understand. I'm glad it went well!
@muhamedshehu7535Ай бұрын
you forgot to cross : pi is an element of the rational numbers, just at the end of the video; and thanks for sharing the amazing content!
@scipionedelferro3 жыл бұрын
Wow!! You're great, best math channel on KZbin! The very best was the last example, with the sequence of digits of pi. It shows that even the algebraic numbers are not complete, as pi is transcendental. And the completeness is an axiom of the Real numbers. But there are countable sets that are complete too. So it is not this axiom that requires the Reals to be uncountable. Must be other axioms...
@maxpercer71193 жыл бұрын
A useful theorem: For a non empty set S, given any epsilon greater than zero, if S is bounded above there exists an A in S such that sup(S) - e < A ≤ sup(S), and if S is bounded below there exists a B in S such that inf(S) ≤ B < inf(S) + e.
@GreatDG2 ай бұрын
This can be proved by contradiction
@PunmasterSTP2 жыл бұрын
Completeness? More like "You need this"...if you're taking a real analysis course! Thanks again for making and sharing all these wonderful videos.
@vbcool834 жыл бұрын
Awesome! Please also cover Axiom of Choice and ZFC Set Theory if possible.
@schalkzijlstra8783 жыл бұрын
Thanks man, all the way from South Africa
@prattzencodes72214 жыл бұрын
Great explanation of sup and inf! :D
@criptonessy35224 жыл бұрын
Wow great video, I think I'll need to watch it a second time to fully digest it, but very clear, thank you!
@humblehmathgeo4 жыл бұрын
Thank you! Please make more videos on topics of Real Analysis! This video was really helpful!
@MichaelPennMath4 жыл бұрын
I am teaching Real Analysis this Fall and I will be making videos to support the whole course.
@humblehmathgeo4 жыл бұрын
@@MichaelPennMath Great!! Thank you!!
@RhynoBytes8572 жыл бұрын
@@MichaelPennMath What textbook does this course use?
@Anna-jy7cj4 жыл бұрын
This is great, I've been looking for something like this and bam here you are .
@ghislainleonel72914 жыл бұрын
Much love from Cameroon 🇨🇲. Great content sir.
@newkid98074 жыл бұрын
Ghislain Leonel how is it in Cameroon?
@directordissy28584 жыл бұрын
@@newkid9807 most likely civil war
@jabronimargaretti73154 жыл бұрын
god bless you man. thanks for doing these lectures!
@fareehaO2 Жыл бұрын
Amazing lecture as always.. V.helpful👏
@ellykalama99753 жыл бұрын
Great teacher 🔥🔥🔥🔥
@MathematicIsFun4 жыл бұрын
Fantastic, but at the very end you forgot to put a line through 'belongs to' sign as you say pie doesn't belong to rational numbers.
@GusTheWolfgang4 жыл бұрын
loved the video. Keep doing a great job!
@natasharomanova81194 жыл бұрын
Man, where was this when I took real analysis?!
@jaredvv864 жыл бұрын
I would like more to this series
@luciuskhor5544 жыл бұрын
Love your video!!! Keep doing it!
@punditgi4 жыл бұрын
Will we see a follow up video on the point set topology of the real number line now? Sure hope so!
@DarkCeleste12602 жыл бұрын
This really help me understand!
@MohitRaj-17124 жыл бұрын
Really good video.
@johanroypaul28163 жыл бұрын
Dear Micheal, Thank you for this amazing video. I have two doubts 1) Shouldn't the set builder form be written in a way to show its elements, therefore can we include the equality sign as x will never take value of √2 and thereby no situation of x^2 =2 arises ? 2) can we say the second sequence has supremum as it cannot be clearly defined since the decimal points do not end and as pie is not a number(in the sense, it is not defined to the exact value with regard to decimal points)?
@cardinalityofaset49922 жыл бұрын
1) The set notation he uses stems from a ZFC axiom called Axiom schema of specification which states that from any arbitrary set, you can choose a subset. The way we do it is that we write the squirly brakets, on the left we write elements of a set that we choose from, and on the right we specify property of those elements. This property ultimately tells which elements we think and so the new set is well defined. So if you wrote equality sign instead of inequality the set would be empty since there are no rational numbers whose square is equal to 2 (as Michael eplained). 2) The second sequence must have supremum according to the axiom of completeness, since 4 is clearly an upper bound and it is not empty because 3 is element of the set of sequence values. However, the supremum is real. Now, there is nothing wrong if supremum of a set is a natural number, or rational number, but it is NOT guaranteed. In this case the supremum is pie, which btw is a number. It is an irrational number which means it is a real number that can be represented as an infinite decimal (number with infinitely many decimal points that never repeat)
@johanroypaul28162 жыл бұрын
@@cardinalityofaset4992 Thank you for the reply. I wrote the first the qts wrong. 1) My doubt was that shouldn't we write it as 'x^2 < 2' instead of 'x^2
@cardinalityofaset49922 жыл бұрын
@@johanroypaul2816 No, x
@johanroypaul28162 жыл бұрын
@@cardinalityofaset4992 Here , since x is an element of Q, x cannot be ✓2 , then why are we writing x^2
@Mr_Academic984 жыл бұрын
Studied this in first year real analysis Polytech yaounde. Really interesting topic.
@2kreskimatmy4 жыл бұрын
that epsilon replacement was kinda cool
@ZainKhan-sm8gr3 жыл бұрын
Great stuff Michael! Just a mistake in the notation at the end. You wrote pi as the element of rational numbers (Q).
@scp_at_iitb5 ай бұрын
I appreciate this video. Thank you
@Lakshya_Raj075 ай бұрын
Sare IIT’s me same h kya MA 101 ka syllabus Btw IIT BHU
@scp_at_iitb5 ай бұрын
@@Lakshya_Raj07 Maybe. But humara Calculus course hai and it is MA 105 instead
@cuppajoeman85694 жыл бұрын
Note that he meant pi is not an element of the rationals at the end, but wrote the opposite.
@ferozsoomro4072 Жыл бұрын
please suggest a textbook to follow along with these videos on real analysis
@anggalol4 жыл бұрын
9:10 We can choose a = (s + s - Ɛ)/2 = (2s - Ɛ)/2
@samisiddiqi54114 жыл бұрын
Teacher: Time for some Real Analysis Kid named Ysis: 😮
@jamesyeung32864 жыл бұрын
Complex and functional AnalYsis must be interesting
@cediemacalisang77134 жыл бұрын
Hi, sorry I may have missed some basic idea, but isn't the sup(B) @7:50 equal to 1/2?
@JoaoVictor-gy3bk4 жыл бұрын
Nop. Notice that the numbers on that first roll have the form n/(n+1), so they look like 2/3, 3/4, ..., 1999/2000 etc etc. They get closer and closer to 1.
@erikjuma27523 жыл бұрын
Good work
@SartajKhan-jg3nz4 жыл бұрын
14:45 I did not understand what you meant by 'If Q is our universe bcz the sqrt(2) is not in Q'. Does that mean that for a set to be complete, for all subsets A that member of S with upperbounds, the SUP(A) must also be a member of S?
@baljeetgurnasinghani65634 жыл бұрын
No it's not necessary. If this set was defined in R, we would have sqrt(2) as the sup. However, since this set is defined in Q, we can't use sqrt(2) since it's not in Q. But that leads to a problem: u don't have a sup for this set now If u consider a rational number r < sqrt(2), u can always find a number greater than r and less than sqrt(2). So, a rational number less than sqrt(2) can never be the sup. Similarly, if u consider a rational number r > sqrt(2) as sup, you can always find another rational number which is an upper bound and also less than r. Since the sup can't be greater than or less than sqrt(2), and there is no number in Q whose square is 2, it basically leads us to the conclusion that this set has no sup. sry if I over complicated the explanation
@SartajKhan-jg3nz4 жыл бұрын
@@baljeetgurnasinghani6563 Actually no! I understood it completely! Thanks a bunch man for taking your time
@baljeetgurnasinghani65634 жыл бұрын
@@SartajKhan-jg3nz My pleasure 😊
@forpublicstuff7282 жыл бұрын
Thank you so much =)
@loucifabdessalam15223 жыл бұрын
Awesome 👍
@sc0820 Жыл бұрын
wo i love ur teaching
@biswarupsaha24954 жыл бұрын
Sir make more videos on Olympiad calliber questions
@RhynoBytes8572 жыл бұрын
Does this course happen to follow a textbook?
@gnarlybonesful4 жыл бұрын
It's a little confusing how you worded the axiom of completeness. Is it right to say that both sets A have least upper bounds and supremums as opposed to saying their lub and supremum exist but are not in A? Or is it more correct to say that A has no least upper bound but has a supremum?
@michaelbillman47893 жыл бұрын
@@angelmendez-rivera351 thanks for that explanation.
@mbrusyda94373 жыл бұрын
@@angelmendez-rivera351 greetings! Sorry for replying after more than a year, but I was just recommended to this video. "every nonempty set A which is a subset of R, if it has an upper bound, then it has a supremum that is an element of A. This is true for finite and infinite sets alike." But what about the set A=[0,1)? If I understood correctly, sup(A)=1, but 1 is not in A?
@carlosjhr643 жыл бұрын
In all of these "Sup[aSet]=u", there's an implied "Universe". Where "aSet" is a subset of some "Universe" and "u" is an element in some "Universe", but not necessarily is "u" in "aSet". I mention this because I've seen what looks like "Sup[Real]=w", and I don't know in what "Universe" "w" is in.
@theemperor-wh40k18 Жыл бұрын
What are you on about.
@kirkjames4 жыл бұрын
These are great, more analysis videos would be awesome.
@kennyrogers46854 жыл бұрын
Can you make a video on the cut property of real numbers?
@debendragurung30334 жыл бұрын
The Lemma 8:10 looks kinda hairy and counterintuitive. If {U} are upper bounds of A , than by common sense , u≥a for ∀ a∈A, u∈U. That's neat. Now where it boggles me is the sup(A). That s is sup(A) if for every ε>0, ∃ a∈A, s.t s-ε
@jananraj66804 жыл бұрын
What are the pre-requisite to follow this real analysis playlist?
@stevenwilson55563 жыл бұрын
thank you
@sarthakmotwani85974 жыл бұрын
Finally got it❤
@duchengp24223 жыл бұрын
do you have some tutorials for further real analysis like lebesgue integral?
@manique6 Жыл бұрын
How do you get zero down the column
@isunrandila21243 жыл бұрын
u replaced s-u with epsilon since the both are higher than zero. Idk it's a little bit strange to me. Care to explain . TIA
@maxpercer71194 жыл бұрын
5:40 you used the archimedian principle, so R must be an archimedian set ;o
@beardedboulderer26094 жыл бұрын
Wouldn't it work to just let a=sup(A) then s-epsilon
@hugodiazroa4 жыл бұрын
Thanks a lot
@wkingston12484 жыл бұрын
Doesn't that theorem and proof only work for a continuous set, how would it work for a discrete set. Do the concepts of continuity even apply to sets?
@kehrierg4 жыл бұрын
i wondered the same. i think the condition for truth of the lemma that wasn't written down might be that the set A must be infinite (not contain finitely many elements). for instance with the A = {1/n : n a natural number} example, the lemma seems true, even though it's still true that A is a discrete set (each element of A has a neighborhood containing no other elements of A).
@quasar7924 жыл бұрын
@@kehrierg I think it works with a set that has finitely many elements. Let A be a set with n elements, and we claim that max{A} = sup A (max{A} is just the largest element of A which is well defined because A is finite, notice that it is in A). Thus to prove the equivalence we use the theorem; Let e > 0 be given, notice that max{A} > max{A} - e and since max{A} is in A, then the proof is done i.e max{A} = sup A.
@KiconcoJovile4 ай бұрын
Why are saying that inf(A) in example 1 is 0 yet 0 is not a natural number???
@donkeywithascarf24354 ай бұрын
I think it's the glb. 0 doesn't necessarily fall under the set of A, I believe, and A is a set of natural numbers in ex 1. And the set is 1/n, so the lub is 1, and 0 would be glb because it's below 1/n. I'm still learning, so I'm not sure, I'm just making wild guesses. 🥲
@ollilui3 жыл бұрын
Perfect!!
@joygodwinwilliamhenry4064 жыл бұрын
Could you please add Indian math olympiad 2020 problem 2 in your list
@goodplacetostop29734 жыл бұрын
16:05
@aaa.o.r79873 жыл бұрын
I can't get the last example 🥺
@bactran77993 жыл бұрын
perfect
@stefanoprodigo34433 жыл бұрын
Thx
@terfatyokula17613 жыл бұрын
What is the supremum of a bull set
@terfatyokula17613 жыл бұрын
Null
@terfatyokula17613 жыл бұрын
Null
@mariamary11163 жыл бұрын
What's the completeness property of lR?
@사기꾼진우야내가죽여2 жыл бұрын
We say an order field F is complete if Every nonempty subset of F which is bounded above has the least upper bound. Since Q does not satisfy the axiom of completeness, this axiom is the characteristic that distinguishes R with Q.
@Trynottoblink4 жыл бұрын
Nice.
@maxpercer71194 жыл бұрын
can you do a video one day on your workout routine. you look jacked ;o
@makshudulislam74424 жыл бұрын
Sir We want more IMO problem,,,pigeon hole problem,,,love from Bangladesh 🇧🇩🇧🇩🇧🇩🇧🇩🇧🇩🇧🇩
@rishikaverma19254 жыл бұрын
life savior
@johnnewton3264 жыл бұрын
Lovely
@MrJ6918 күн бұрын
I was sadly dissapointed that there were no cool visuals
@artlifestyle68023 жыл бұрын
Can you give subtitle Indonesia?
@VaradMahashabde4 жыл бұрын
I didn't know this was a thing
@the_nuwarrior4 жыл бұрын
10/10
@ebhojayejuliet9728 Жыл бұрын
How is the inf 0 it makes no sense 😭
@MohamedBenamer9407 ай бұрын
Inf(A) = 0, Sup(A) = 1: Because: 1/n = 1 for n = 1, and lim(n->infinity) 1/n = 0 And the sequence of numbers 1/n is strictly decreasing from 1 to 0 (0 not included, 0 not in A) as n goes from 1 to infinity. Inf(B) = 0, Sup(B) = 1: For a fixed m: lim(n->infinity) m/(n+m) = 0 and the sequence of numbers m/(m+n) is strictly decreasing from m/(m+1) < 1 to 0 as n goes from 1 to infinity. For fixed n: lim(m->infinity) m/(n+m) = 1 and the sequence of numbers m/(m+n) is strictly increasing from 1/(1+n) infinity) m/(m+n) = n/(2n) = 1/2
@MohamedBenamer9407 ай бұрын
1 and 0 not in B also, because we get it from taking n or m approaching infinity, which is a limit not exactly equal to infinity (because it's not possible) و الله اعلم
@_JoyBoy_4 жыл бұрын
Anyone heard Nintendo switch sound effect? 10:14
@firstnamelastname86844 жыл бұрын
I always pronounced it like ‘sup lol
@duckymomo79354 жыл бұрын
Dedekind cuts, nice
@GusTheWolfgang4 жыл бұрын
gotta love the *soup*
@punditgi2 жыл бұрын
This cannot be true for a finite set.
@bakradil19982 жыл бұрын
عراقي بجامعة بغداد مر من هنا ❤
@إسحاق-و2 Жыл бұрын
السلام علیکم و رحمة الله وبركاته أهلا حياك الله شاهد قناة نواف يوسف محمد الزهراني ستجد فيها ما قد يساعدك.
@duckymomo79354 жыл бұрын
Nice and beautiful Oh I meant the guy, the math is too
@tinacofactory7 ай бұрын
No
@mengconghu94093 жыл бұрын
lit
@oraz.8 ай бұрын
He moves kind of fast
@joshtaylor15684 жыл бұрын
Man's fuckin' YOKED
@tribrunodang4 жыл бұрын
Guys that know math are hot hehe.
@jamesyeung32863 жыл бұрын
soup
@asht7504 жыл бұрын
Dude, take a breath. You speak too fast for instruction.
@tomatrix75254 жыл бұрын
Maybe he doesn’t suit your pace. That’s fine, find another video or something. The majority really find it great.