Thanks love babber Bhaiya 16:25 Tail Recursion TC: O(N) and SC: O(N) 17:36 Head Recursion TC: O(N) and SC: O(N) 21:44 TC: O(N) and SC: O(N) 30:02 Before Optimisation TC: O(2^N) and SC: O(N) Yes, It can be Optimize with Dynamic Programming and can be done with an iterative method. Code using DP: int Fibo(int n,int dp[]) { if(n
@shefalimishra75513 жыл бұрын
16:20 Tail Recursion Time Complexity: O(n) Space Complexity: O(n) used in recursion stack 17:30 Head Recursion Time Complexity: O(n) Space Complexity: O(n) used in recursion stack 23:20 Time Complexity: O(n) Space Complexity: O(n) used in recursion stack 30:00 Before Optimization Time Complexity: O(2^n) Space Complexity: O(n) used in recursion stack Can be optimize using DP and can be done with an iterative method. int fibonacci (int n) { int dp[n + 1]; dp[0] = 0; dp[1] = 1; for(int i = 2; i < n + 1; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } The above code has a space complexity of O(n) and time complexity of above code is O(n) We can further optimize it to space complexity of O(1) with the following code: int fibonacci (int n) { int a = 0; int b = 1; for(int i = 2; i < n + 1; i++) { int temp = b; b = a + b; a = temp; } return b; } 39:40 Time Complexity: O(n) Space Complexity: O(n) used in recursion stack + O(1) for mapping the number to its respective names( like 4 - 'four'). Hence, effective space complexity will be O(n) where n is length of number i.e. number of digits 46:50 Time Complexity: O(log(n)) 54:50 Time Complexity: O(n) Space Complexity: O(n) 1:02:10 Time Complexity: O(2^n) Space Complexity: O(n) 1:10:00 Time Complexity: O(3^n) Space Complexity: O(n) 1:15:00 Time Complexity: O(2^n) Space Complexity: O(n) 1:20:00 Time Complexity: O(n*n!) Space Complexity: O(n)
@axel91943 жыл бұрын
Thx and nice ,where do u learn all this
@shefalimishra75513 жыл бұрын
@@axel9194 i actually did a course from pepcoding, but gfg is the best resource to actually learn
@axel91943 жыл бұрын
@@shefalimishra7551 ok thank you
@axel91943 жыл бұрын
Do u know another method of ques 8?
@shefalimishra75513 жыл бұрын
@@axel9194 number of jumps?
@Cricket-Memories-With-Akshay3 жыл бұрын
Hello Love Bhiya, errors I find after watching this video are following: 1. 16:20 Tail Recursion TC: O(n) SC: O(n) used in recursion stack 2. 17:30 Head Recursion TC: O(n) SC: O(n) used in recursion stack 3. 23:20 TC: O(n) SC: O(n) used in recursion stack 4. 30:00 Before Optimization TC: O(2^n) SC: O(n) used in recursion stack Can be optimize using DP and can be done with an iterative method. int fibonacci (int n) { int dp[n + 1]; dp[0] = 0; dp[1] = 1; for(int i = 2; i < n + 1; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } TC of above code: O(n) SC of above code: O(n) - dp array 5. 39:40 TC: O(n) SC: O(n) used in recursion stack + O(1) for mapping the number to its respective names( like 4 - 'four'). Hence, effective space complexity will be O(n) where n is length of number 6. 46:50 TC: O(log(n)) 7. 54:50 TC: O(n) SC: O(n) 8. 1:02:00 TC: O(2^n) SC: O(n) 9. 1:10:00 TC: O(3^n) SC: O(n) 10. 1:15:00 TC: O(2^n) SC: O(n) 11. 1:20:00 TC: O(n*n!) SC: O(n) Thank You for this video!
@CareerEdgeLearn3 жыл бұрын
wow, it's great finally, I get to know about all the errors
@pranav_arya3 жыл бұрын
ye sab errors hai ya un questions ke answers hai jo bhaiya ne video me diye hai???
@shefalimishra75513 жыл бұрын
@@pranav_arya these are the answers to the problems given
@pranav_arya3 жыл бұрын
@@shefalimishra7551 thank you
@raghavarora95293 жыл бұрын
16:25 Tail Recursion ( when processing comes before the recursive call ) 17:37 Head Recursion (when call comes before processing) 23:33 T.C - O(n) S.C - O(n) 30:04 T.C - O(2^n) S.C - O(n) We can optimise using iterative method (Then we can do this in linear time and no stack space required) 39:44 T.C - O(length of number) and S.C - O(length of number ) 46:54 Fast Exponentiation TC - Log(n) 54:50 T.C - O(n) S.C - O(n) 1:02:15 Subset question TC - O(2^N) SC - O(N) 1:11:10 Max 3 jump question ( TC - O(3^N) SC- O(N)) 1:15:17 Subsequence Question ( TC - O( 2^N ) SC - O(N) ) 1:26:20 Permutations (TC - O(N*Log(N)) SC - O(N) 1:31:30 Source To Destination ( TC- O(2^(n^2)) SC -O(n^2). Done Bhaiya 🔥🔥. Thank you for this Awesome Video 🎉❤️ aroraraghav008@gmail.com
@NaushadAli-uq1ss3 жыл бұрын
Thank you for making search job easy
@tech_wizard93153 жыл бұрын
Please tell whether this video was helpful or not?
@NaushadAli-uq1ss3 жыл бұрын
Absolutely 100
@Tusharrao343 жыл бұрын
@@tech_wizard9315 bahot helpful hai bhai
@trendtidetv5283 жыл бұрын
mila gift card
@Lakshmi_Prasanna0013 жыл бұрын
16:19 Tail recursion as the recursive function is the last thing that is executed in the function the statement are cout
@parikshitrathore15103 жыл бұрын
---16:23 Tail Recursion (printing first, then Calling our Recursive Function) [T.C O(n) & S.C O(n)] ---17:37 Head Recursion ( first calling our Recursive Function And Then Printing) [T.C O(n) & S.C O(n)] ---23:22 T.C O(n) & S.C O(n) ---30:05 T.C O(2^n) & S.C O(n) Optimization Using Iteration #include using namespace std; int main() { int n; cin>>n; int num1 =0; int num2 =1; int answer =0; for ( int i = 2; i
@shikhershukla76503 жыл бұрын
16:25 (5 4 3 2 1)head recursion as the printing is done before the recursive call Time complexity - O(n) Space complexity - O(n) 17:25 (1 2 3 4 5)tail recursion as the printing is done after the recursive call Time complexity - O(n) Space complexity - O(n) 23:40 (factorial) Time complexity - O(n) Space complexity - O(n) 29:50 (fibonacci) Time complexity - O(2^n) Space complexity - O(n) We can optimize the approach(not using recursion) by storing the previous two numbers in variables and summing them to get the nth term. 39:30 (spelling numbers) Time complexity - O(n) Space complexity - O(n) 46:50 (expenontation) Time complexity - O(log n) Space complexity - O(log n) 54:50 (sorted or unsorted) Time complexity - O(n) Space complexity - O(n) for unsorted arrays calls will be less than n but this is worst case complexity that is when the array is sorted and it will traverse all n elements 1:02:30 (subset) Time complexity - O(2^n) Space complexity - O(n) the loop returns 2^n subset for every n input array afteracademy.com/blog/print-all-subsets-of-a-given-set (link to the bitmasking approach) 1:11:00 (Ways to reach Nth stair by jumps) Time complexity - O(3^n) Space complexity(n) 1:15:20 (subsequence of a string) Time complexity - O(2^n) Space complexity - O(n) This question can be done using bit masking also 1:26:25 (permutaions of a string) Time Complexity - O(n*n!) Space complexity - O(n) Thank you so much bhaiya this really helped me a lot E-mail ID - shikher.shukla02@gmail.com
@deepanshupratik25953 жыл бұрын
spelling no don't you think 2^n hoga for fibonacci? as for 5 it will call 3 and 4 and for 4 it will call 2&3 ....every no has 2 splits....
@shikhershukla76503 жыл бұрын
@@deepanshupratik2595 Yes you're right typed n by mistake
@abhishekdhok52453 жыл бұрын
//I hope this will helps. Correct me if I am wrong 16:20 => example of head recursion time complexity : O(n) space complexity : O(n) 23:31 : factorial program time complexity : O(n) space complexity : O(n) 30:09 => fibonacci sequence time complexity : O(2^n) => yes we can optimize this time complexity using dp as it is so many overlapping subproblems. space complexity : O(n) 38:06 => printspell time complexity : O(n) space complexity : o(2n) 44:32 => fast exponentiation time complexity : O(logn) space complexity : 0(logn) 54:48 => sorted or unsorted time complexity : O(n) space complexity : O(n) 1:00:34 => power set time complexity : O(2^n) space complexity : O(n) 1:10:24 => staircase problem time complexity : O(3^n) i am not sure space complexity : o(n) 1:14:51 => print all subsequences time complexity : O(2^n) space complexity : O(n) 1:26:31 => print all permutations time complexity : O(n*n!) => I used google to find this. space complexity : O(n) 1:29:02 => total ways to reach destination time complexity : it is also exponential but we can also solve this type of problem using bfs.. space complexity : O(n) This is my channel where I share the knowledge which I acquired during my coding journey : kzbin.info/door/lhbnKEAywXqkLkxa_23j0Q Thank You!!!.
@Live-hh6li3 жыл бұрын
Method to find time and space complexity of Recursion: Time complexity = No of levels of recursion tree * Work done at each level Smjhte hai Jese lo print n numbers Ab isme apn hr level p O(1) ka kam kr rhe hai Aur isme level hogi n+1 Toh iski time complexity ho gyi O(n) Thoda complex example lete hai ab Stair wala problem Isme agr apn recursion tree dekhe toh apn ek node k lie 3 recursive call kr rhe hai Mtlb ki hr level p nodes bdhte ja rhe by a factor of 3 Pehle me 1 fir 3 fir un 3 ke 9 Aur levels kitni hai? At max n And ek node p O(1) ka work hai Toh total work 1 + 3 + 9 ....... Toh iski complexity hogi O(3^n) Agr koi recursion me apn kuch choice kr rhe hai toh uski time complexity hoti hai O(choice^n) Jese agr stairs me 1 2 3 ki jagah agr sirf 1 2 hota toh complexity O(2^n) hoti Ab bat krte hai Space ki: Toh recursion me space complexity hoti hai depth of deepest recursion tree brach Smjhte hai isko Jese ki apn n number print kr rhe the Toh usme deepest tree ek hi thi Aur woh n tk ja rhi thi Isliye space hogi O(n) Thoda complex example lete hai Stair wala problem Agr usme ap hr bar 1 steps lo Toh recursion tree kafi lmbi bn jaegi Uski height hogi n joki size of stairs hai. Isliye O(n) space complexity How recursion works actually? Jb apn recursion call krte hai tb Sbse pehla joh call hota hai woh base case tk chlta rehta hai Fir woh khatam hota hai Uske bad dusra call execute hota Isliye hm space complexity ko height of deepest branch lete hai Kyoki isse jyada time hoga nhi And ek tree ka brach khatam hone k bad uska space empty ho jata hai Jisse dusre recursive calls use krte hai I think now you can answer all 11 questions which are given by bhaiya Koi doubt ho toh you can comment
@parrotsparadise39142 жыл бұрын
I have doubt at 38:35 Jab n=0 hoga to kuch bhi nhi print hoga right??
@piyushsonkar5643 жыл бұрын
16:22 Tail Recursion is used ( when processing comes before the recursive call ) 17:33 Head Recursion is used (when call comes before processing) 23:27 T.C - O(n) S.C - O(n) 30:09 T.C - O(2^n) S.C - O(n) We can optimize it using iterative method i.e. we can do this in linear time and hence we do not need any space 39:39 T.C - O(length of number) and S.C - O(length of number ) 46:49 Fast Exponentiation Tc - Log(n) 54:47 T.C - O(n) S.C - O(n) 1:02:17 Subset question TC - O(2^N) SC - O(N) 1:11:10 Max 3 jump ( Tc - O(3^N) SC- O(N)) 1:15:12 Subsequence Question ( Tc - O( 2^N ) SC - O(N) ) 1:26:24 Permutations (Tc - O(N*Log(N)) SC - O(N) 1:31:33 Source To Destination ( TC- O(2^(n^2)) SC -O(n^2). piyushsonkar001@gmail.com
@FarhanKhan-mv1sc2 жыл бұрын
Gift mila bhaii
@saifahmedkhan34563 жыл бұрын
16:23 Tail Recursion (bcz, we make a recursive call at the end of func.) Time and Space Complexity = O(n) 17:34 Head Recursion (bcz, we make a recursive call at the starting of func.) Time and Space Complexity = O(n) 23:22 Time and Space Complexity = O(n) 29:56 Yes, we can do with dynamic programming (Time Complexity = O(n^2) , Space Complexity = O(n)) 39:40 Time and Space complexity = O(n) 46:56 Fast Exponentiation (Time complexity = log(n)) 54:51 Time and space complexity = O(n) 1:02:15 Subset (Time complexity =O(2^n) and Space Complexity = O(n)) 1:11:09 Max 3 ( Time Complexity = O(3^n) and Space Complexity = O(n)) 1:15:19 Sub sequence ( Time Complexity = ( 2^n) and Space Complexity - O(n) ) 1:26:22 Time Complexity = O(n*Log(n)) and Space Complexity - O(N) 1:31:33 Time =O(2^(n^2)) Space Complexity =O(n^2) Homework completed Bhaiya Thank u @love Babbar bhaiya for this amazing video Your videos really help a lot. saifahmedkhan19@gmail.com
@amaanansari16043 жыл бұрын
16:22 Tail Recursion Time Complexity: O(n) Space Complexity: O(n) 17:40 Head Recusion Time Complexity: O(n) Space Complexity: O(n) 23:20 Time Complexity: O(n) Space Complexity: O(n) 29:54 With recursion, its Time complexity would be O(n^2) and space complexity O(n) It can be done using the iterative method with Time complexity of O(n) and space complexity O(1). 39:40 Time Complexity: O(n) Space Complexity: O(n) n= length of number 46:47 Time complexity O(log(n)) 56:30 void PowerSet(char *set, int size) { unsigned int pow_size = pow(2, size); int counter, j; for(counter = 0; counter < pow_size; counter++) { for(j = 0; j < size; j++) { if(counter & (1
@anshulsingh12653 жыл бұрын
16:25 Tail Recursion Time Complexity- O(n) Space Complexity- O(n) 17:36 Head Recursion Time Complexity- O(n) Space Complexity- O(n) 21:44 By using Dynamic Programming we can find Factorial of larger Number's Bhaiya vale code ki TC : O(N) and SC : O(N) 30:02 We can Optimize this code with Dynamic Programming and Iterative method. Bhaiya vale code ki TC :O(2^N) and SC : O(N) Code snippet of Fibbo using DP : static int Fibb(int x,int[] memo) { if(memo[x] != -1) return memo[x]; // Dynamic memory check if(x
@kinshukrajput73583 жыл бұрын
Really Helpful
@codedotjava34613 жыл бұрын
Bhai... Aap ka dhanyavaad.. 🤙🏻🤙🏻
@anshulsingh12653 жыл бұрын
No problem guy's..
@ritikhooda39163 жыл бұрын
16:20 => example of head recursion time complexity : O(n) space complexity : O(n) 23:31 : factorial program time complexity : O(n) space complexity : O(n) 30:09 => fibonacci sequence time complexity : O(2^n) => yes we can optimize this time complexity using dp as it is so many overlapping subproblems. space complexity : O(n) 38:06 => printspell time complexity : O(n) space complexity : o(2n) 44:32 => fast exponentiation time complexity : O(logn) space complexity : 0(logn) 54:48 => sorted or unsorted time complexity : O(n) space complexity : O(n) 1:00:34 => power set time complexity : O(2^n) space complexity : O(n) 1:10:24 => staircase problem time complexity : O(3^n) i am not sure space complexity : o(n) 1:14:51 => print all subsequences time complexity : O(2^n) space complexity : O(n) 1:26:31 => print all permutations time complexity : O(n*n!) => I used google to find this. space complexity : O(n) 1:29:02 => total ways to reach destination time complexity : it is also exponential but we can also solve this type of problem using bfs.. space complexity : O(n)
@samiryadav23103 жыл бұрын
16:20 head recursion Time complexity-O(n) ,space complexity-O(n)
@manjarigoyal27062 жыл бұрын
If u are looking for dsa playlist then u came at right channel. I've watched many videos of different playlists but couldn't find that much beginner friendly videos. He has taught in a very better way.
@samyakjain41433 жыл бұрын
16 Tail Recursion Time Complexity: O(n) Space Complexity: O(n) 17 Head Recursion Time Complexity: O(n) Space Complexity: O(n) 23 Time Complexity: O(n) Space Complexity: O(n) 30 Before Optimization Time Complexity: O(2^n) Space Complexity: O(n) used in recursion stack Can be optimize using DP and can be done with an iterative method. 39:40 Time Complexity: O(n) Space Complexity: O(n) used in recursion stack + O(1) for mapping the number to its respective names( like 4 - 'four'). Hence, effective space complexity will be O(n) where n is length of number i.e. number of digits 46:50 Time Complexity: O(log(n)) 54:50 Time Complexity: O(n) Space Complexity: O(n) 1:02:10 Time Complexity: O(2^n) Space Complexity: O(n) 1:10:00 Time Complexity: O(3^n) Space Complexity: O(n) 1:15:00 Time Complexity: O(2^n) Space Complexity: O(n) 1:20:00 Time Complexity: O(n*n!) Space Complexity: O(n)
@kelvin-parmar3 жыл бұрын
16:23 tail recursion 17:38 head recursion 23:38 time complexity o(n) Space complexity o(n) 30:07 space complexity o(1) Time complexity o(n) 39:40 space complexity o(1) Time complexity o(n)
@prashantrawat55893 жыл бұрын
16;20 tail recursion Time Complexity: O(n) Space Complexity: O(n) used in recursion stack 17:30 Head Recursion Time Complexity: O(n) Space Complexity: O(n) used in recursion stack 23:20 Time Complexity: O(n) Space Complexity: O(n) used in recursion stack 30:00 Before Optimization Time Complexity: O(2^n) Space Complexity: O(n) used in recursion stack Can be optimize using DP and can be done with an iterative method. int fibonacci (int n) { int dp[n + 1]; dp[0] = 0; dp[1] = 1; for(int i = 2; i < n + 1; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } The above code has a space complexity of O(n) and time complexity of above code is O(n) We can further optimize it to space complexity of O(1) with the following code: int fibonacci (int n) { int a = 0; int b = 1; for(int i = 2; i < n + 1; i++) { int temp = b; b = a + b; a = temp; } return b; } 39:40 Time Complexity: O(n) Space Complexity: O(n) used in recursion stack + O(1) for mapping the number to its respective names( like 4 - 'four'). Hence, effective space complexity will be O(n) where n is length of number i.e. number of digits 46:50 Time Complexity: O(log(n)) 54:50 Time Complexity: O(n) Space Complexity: O(n) 1:02:10 Time Complexity: O(2^n) Space Complexity: O(n) 1:10:00 Time Complexity: O(3^n) Space Complexity: O(n) 1:15:00 Time Complexity: O(2^n) Space Complexity: O(n) 1:20:00 Time Complexity: O(n*n!) Space Complexity: O(n)
@tanishqchaturvedi91713 жыл бұрын
1...16:23 Tail Recursion ( Since we are printing first , then Calling our Recursive Function) [T.C O(n) & S.C O(n)] 2..17:37 Head Recursion ( Since we are first calling our Recursive Function And Then Printing) [T.C O(n) & S.C O(n)] 3..23:22 T.C O(n) & S.C O(n) 4..30:05 T.C O(2^n) & S.C O(n) Optimization Using Iteration #include using namespace std; int main() { int n; cin>>n; int n1 =0; int n2 =1; int ans =0; for ( int i = 2; i
@bhavyatyagi56043 жыл бұрын
16:22 => example of head recursion time complexity : O(n) space complexity : O(n) 23:31 : factorial program time complexity : O(n) space complexity : O(n) 30:09 => fibonacci sequence time complexity : O(2^n) space complexity : O(n) 38:06 => printspell time complexity : O(n) space complexity : o(2n) 44:32 => fast exponentiation time complexity : O(logn) space complexity : 0(logn) 54:48 => sorted or unsorted time complexity : O(n) space complexity : O(n) 1:00:34 => power set time complexity : O(2^n) space complexity : O(n) 1:10:24 => staircase problem time complexity : O(3^n) space complexity : o(n) 1:14:51 => print all subsequences time complexity : O(2^n) space complexity : O(n) 1:26:31 => print all permutations time complexity : O(n*n!) space complexity : O(n) 1:29:02 => total ways to reach destination space complexity : O(n)
@lokeshnegi50513 жыл бұрын
1. 16:22 is tail recursion because first we are printing the number and then calling the function further, so we are starting from tail and going all the way to head. In tail recursion the recursive call is the last is the last statement. T.C: O(n) and S.C: O(1) 2. 17:35 is head recursion because first we are going all the way to bottom and then coming back to head. In head recursion recursive call is the first statement in the function. T.C: O(n) and S.C: O(1) 3. 23:25 T.C: O(n) and S.C: O(1) 4. 30:00 for fibonacci we can use d.p by storing the result of terms in a map we can use them directly instead of calculating them again and again. T.C : O(n) and S.C: O(1) 5. 39:50 T.C: O(n) and S.C: O(1) 6. 1:11:13 jump stairs T.C : O(2 pow(n)) S.C : O(1) 7. 1:15:17 sub sequence T.C : O(2pow(n)) S.C : O(1)
@shivamsahu23813 жыл бұрын
Thank You Bhaiya for making this video. this video really helped me. Here are my answers to all the questions. And Guys Please share this video to helps others people. Q1 -------------------------> 16:25 => it is a Tail recursion. because processing(work) occurs before the recursive call. TC: O(N) and SC: O(N) --> space taken by stack mem. 17:32 => it is a head recursion. because here recursive call comes before others processing in the function. TC: O(N) and SC: O(N) --> space taken by stack mem. Q2 -------------------------> 23:26 => Factorial problem TC: O(N) and SC: O(N) -->space taken by stack mem. Q3 -------------------------> 30:02 => Before Optimisation of Fibonacci Problem TC: O(2^N) and SC: O(N) -->space taken by stack mem. Yes, it can be optimized by using Dynamic Programming and iterative method. iterative method: ( TC: O(N) and SC: O(1)) int fib(int n) { int a = 0, b = 1, c; //creating a,b variable to maintain previous two fib numbers if( n == 0) return a; for(i = 2; i 39:43 T.C: O(n) and S.C: O(n) where n is the number of digits of a given number Q5 -------------------------> 41:56 => TC: O(N) and SC: O(N) 45:56 => TC: Log(N) and SC: on(N) where N is power of given number like : a^N Q6 -------------------------> 47:25 => Sorted or unsorted array problem T.C: O(n) and S.C: O(n) Q7 -------------------------> 54:58 => Subset question T.C: O(2^n) and S.C: O(n) Q8 -------------------------> 1:11:08 => jump stair problem T.C: O(3^n) and S.C: O(n) Q9 -------------------------> 1:12:03 => Subsequence problem T.C: O(2^n) and S.C: O(n) Q10 -------------------------> 1:16:15 => Parmutation problem T.C: O(n*n!) and S.C: O(string len) Q11 -------------------------> The time complexity of problem-11 recursive solution is exponential Thank you for reading my answers. Again I am saying, this video is very helpful for me. Please like, share this video to helps others people.
@tech_wizard93153 жыл бұрын
How was the video? Did this video helped you as a beginner to solve medium/hard level problem easily??
@KhanSaddam3 жыл бұрын
16:20 Tail recursion: If the recursive call is last thing done by the function , there is no need to keep record of previous things.. public static void func(int n){ If(n==0){ return; } else{ System.out.println(n); } return func(n-1); } 17:30 Head recursion: If the recursive call is not last thing done by the function after returning back there is something to evaluate .. public static void func(int n){ If(n==0){ return; } func(n-1); System.out.println(n); }
@Arunkumar-bm7kq3 жыл бұрын
16:25 head recursion, time complexity:O(n) space complexity:O(n) 17:46 tail recursion, time complexity:O(n) space complexity:O(n) 23:23 for factorial tc=O(n), sc=O(n) 30:04 fibnocii tc= golden ratio /pi(n) sc=O(n)
@devenderbariya91983 жыл бұрын
1. 16:16 Tail recursion, because recursive call is after processing. Time complexity: O(n) Space complexity: O(n) 2. 17:30 Head recursion, because processing is after recursive call. Time complexity: O(n) Space complexity: O(n) 3. 23:17 Time complexity: O(n) Space complexity: O(n) 4. 29:43 Before Optimization: Time Complexity: O(2^n) Space Complexity: O(n) Can be optimized using DP and can be done with an iterative method. int fibonacci (int n) { int dp[n + 1]; dp[0] = 0; dp[1] = 1; for(int i = 2; i < n + 1; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } Time Complexity of above code: O(n) Space Complexity of above code: O(n) - dp array 5. 39:38 Time Complexity: O(n) Space Complexity: O(n) used in recursion stack + O(1) for mapping the number to its respective names( like 4 - 'four'). Hence, effective space complexity will be O(n) where n is length of number 6. 46:50 Time complexity: O(log n) Space complexity :O(log n) 7. 54:45 Time Complexity: O(n) Space Complexity: O(n) 8. 1:02:00 Time Complexity: O(2^n) Space Complexity: O(n) 9. 1:11:00 Time Complexity: O(3^n) Space Complexity: O(n) 10. 1:15:17 Time Complexity: O(2^n) Space Complexity: O(n) 11. 1:26:10 Time Complexity: O(N*Log(N)) Space Complexity: O(N) 12. 1:31:20 Time Complexity: O(2^(n^2)) Space Complexity: O(n^2) devbariya602@gmail.com
@prajwalgawande80663 жыл бұрын
5,4,3,2,1=head 1,2,3,4,5.=tail factorial=> Time Complexity: O(n) Space Complexity: O(n) fibonacii=>Time Complexity: O(n) Space Complexity: O(n) num to english spelling=>Time Complexity: O(n) Space Complexity: O(n) 39:40 Time Complexity: O(n) Space Complexity: O(n) 46:50 Time Complexity: O(log(n)) 54:50 Time Complexity: O(n) Space Complexity: O(n) 1:02:10 Time Complexity: O(2^n) Space Complexity: O(n) 1:10:00 Time Complexity: O(3^n) Space Complexity: O(n) 1:15:00 Time Complexity: O(2^n) Space Complexity: O(n) 1:20:00 Time Complexity: O(n*n!) Space Complexity: O(n)
@saharshbrnwl3 жыл бұрын
Thanks Bhaiya it was quite helpful...❤🖤❤ Aur ye rha answers: 1) 16:21 Tail recursion 5,4,3,2,1 Time Complexity: O(n) Space Complexity: O(n) 2) 17:39 Head recursion 1,2,3,4,5 3) 23:21 Time complexity: O(n) Memory Complexity: O(n) 4) 29:50 Fibbonaci without recurssion Time complexity: O(n) using iternative method 5) 39:43 Digit_To_Spelling Time complexity: O(length of num) Space complexity: O(length of num) 6) 56:31 Exponent : Time complexity: O(n) Space complexity: O(1) 7) 1:11:10 Sorted_Or_Unsorted : Time complexity: O(n) Space complexity: O(n) 8) Subset Time complexity: O(2^n) Space complexity: O(n) 9) Stairs Time complexity: O(3^n) Space complexity: O(n) 10) 1:15:16 Subsequence: Time complexity: O(2^n) space complexity: O(n) 11) 1:26:20 Permutation:Time complexity: O(n*n!) space complexity: O(n) 12) Source_To_Destination : Time complexity: O(n*n) space complexity: O(n*n)
@empvaibhav97993 жыл бұрын
Q1) Tail recursion, Head recursion respectively, TC, SC =O(n) Q2) Time and Space complexity O(N). Q3) Yes using Dynamic programming we can optimize it. TC= O(2^n). SC-(N) Q4) Space complx= O(2n), Time Complex = O(n). "n=no. of digits in given number" Q5) TC and SC O(logN) Q6) TC and SC O(n) , "n=len(arr)" Q7)TC=O(2^n), sc = O(n), "n=len(arr)". Q8)TC=O(2^n), sc = O(n) , "n=no of stairs." Q9)TC=O(2^n), sc = O(n) , "n=no of characters in given word" Q10) Tc=O(n*n) sc-O(n) Q11) Tc = exponential, we can optimize it using dynamic prog or bfs will also work, sc=O(N)
@pratyayurade32473 жыл бұрын
*For Counting* 16:30 - Tail Recursion, Time complexity O(n), space complexity O(n) 17:35 - Head Recursion, Time complexity O(n), space complexity O(n)
@harshii31103 жыл бұрын
--- 16:23 Tail Recursion T.C O(n) & S.C O(n) ---17:37 Head Recursion T.C O(n) & S.C O(n) ---23:22 T.C O(n) & S.C O(n) ---30:05 T.C O(2^n) & S.C O(n) Optimization Using DP: TC:O(n) S.C:O(n) #include using namespace std; int fib(int n){ int dp[n+2]; dp[0]=0; dp[1]=1; for(int i=2;i>n; coutn; int n1 =0; int n2 =1; int ans=0; for ( int i = 2; i
@devangmathur58092 жыл бұрын
Got Voucher?
@rahulpatel434333 жыл бұрын
1. 16:20 Tail Recursion TC: O(n) SC: O(n) used in recursion stack 2. 17:30 Head Recursion TC: O(n) SC: O(n) used in recursion stack 3. 23:20 TC: O(n) SC: O(n) used in recursion stack 4. 30:00 Before Optimization TC: O(2^n) SC: O(n) used in recursion stack Can be optimize using DP and can be done with an iterative method. int fibonacci (int n) { int a[n + 1]; a[0] = 0; a[1] = 1; for(int i = 2; i < n + 1; i++) { a[i] = a[i - 1] + a[i - 2]; } return a[n]; } TC of above code: O(n) SC of above code: O(n) - a array 5. 39:40 TC: O(n) SC: O(n) used in recursion stack + O(1) for mapping the number to its respective names( like 4 - 'four'). Hence, effective space complexity will be O(n) where n is length of number 6. 46:50 TC: O(log(n)) 7. 54:50 TC: O(n) SC: O(n) 8. 1:02:00 TC: O(2^n) SC: O(n) 9. 1:10:00 TC: O(3^n) SC: O(n) 10. 1:15:00 TC: O(2^n) SC: O(n) 11. 1:20:00 TC: O(n*n!) SC: O(n)
@bestclips5123 жыл бұрын
1)16:23 Tail Recursion ( Since we are printing first , then Calling our Recursive Function) [T.C O(n) & S.C O(n)] 2)17:37 Head Recursion ( Since we are first calling our Recursive Function And Then Printing) [T.C O(n) & S.C O(n)] 3)23:22 T.C O(n) & S.C O(n) 4)30:05 T.C O(2^n) & S.C O(n) Optimization Using Iteration #include using namespace std; int main() { clrscr(); int n ,n1=0,n2=0,ans=0,i; cin>>n; int n1 =0; for (i = 2; i
@namankumar72753 жыл бұрын
Thank you bhaiya for making this video now I'm champ in Recursion 😊😂. 16:21 Head Recursion or Tail recursion? Answer: It's a Tail recursion because when nothing has to be done after the recursive call that is tail recursion. Time Complexity : O(n) & Space Complexity : O(n) 17:35 Head Recursion or Tail recursion? Answer: It's a Head recursion because when something has to be done after the recursive call. Time Complexity : O(n) & Space Complexity : O(n) 23:16 Time Complexity : O(n) & Space Complexity : O(n) 30:00 By this solution the time complexity would be Tn = T(n-1) + T(n-2) + O(1) so, Time Complexity : O(2^n) & Space Complexity : O(n) Yes we can also print the fibonaaci series using iteration Example :- public static void printFibo(int n) { int n1=0,n2=1,n3,i; System.out.print(n1+" "+n2);//printing 0 and 1 for(i=2;i
@dipanshugupta81663 жыл бұрын
Question 1: Get Counting 16:55 Tail Recursion TC: O(N) and SC: O(N) 17:36 Head Recursion TC: O(N) and SC: O(N) Question 2: Factorial 21:44 TC: O(N) and SC: O(N) Question 3: Fibonacci 30:02 Before optimization TC: O(2^N) and SC: O(N) Optimized code: int Fibo(int n,int dp[]) { //base case if(n
@keshav_jha_3 жыл бұрын
Finally i have completed this whole video and saare questions k answers mene notepad me likhte ja raha tha ab me yaha paste kar de raha hu. 16:24 tail recursion hai ye wala 17:35 head recursion h ye 23:32 Time Complex - O(n) S.C - O(n) 30:06 Time Complex - O(2^n) S.C - O(n) iterative method se optimize ho sakta h 39:45 Time Complex - O(length of number) and S.C - O(length of number ) 46:53 Fast Exponentiation TC - Log(n) 54:50 T.C - O(n) S.C - O(n) 1:02:15 Subset Question hai ye TC - O(2^N) SC - O(N) 1:11:10 Max 3 jump question ( TC - O (3^N) SC- O(N)) 1:15:16 Subsequence question ( TC - O ( 2^N ) SC - O(N) ) 1:26:21 Permutation (TC - O(N*Log(N)) SC - O(N) 1:31:31 Source To dstination ( TC- O(2^(n^2)) SC -O(n^2). Rcursion pura samjhane k lie thanku bhaiya; learnsmartbesmart@gmail.com
@theinsanehuman20053 жыл бұрын
16:25 time Complexity -----O(n) & space C------------O(n) 17:36 time complexity --------O(n) & space C--------------- O(n) 21:45 time compl ----O(n) & space C------ O(n) 30:02 Time Complexity O(2^n) & Space C ------- O(n) 39:44 time complexity--------- O(length of number) & space Complexity-------- O( length of number) 46:53 time complexity ----- Log(n) 54:51 Time Complexity -------O(n) & Space C -----O(n) 1:02:16 time complexicity - O(2^n) & space C - O(n) 1:11:11 time complexity O(3^n) & space C----- O(N) Thanks Bhaiya For Wonderful videos
@jagritaneja90963 жыл бұрын
1. When number is printing first and then next function call is made then it is tail recursion i.e at 16:20 and when numbers are printed at return time then recursion is called head recursion. The time complexity for both will be O(n) and space complexity will also be O(n) 2. 23:20 Time complexity for factorial of a number is O(n) and space complexity is also O(n)
@bilalmirza72133 жыл бұрын
Printing numbers:- Starting from 1(1,2,3,4,5) Print statement is coming after recursive call or execute after recursive call this is head recursion And second one is tail recursion (5,4,3,2,1)
@ishankbansal92393 жыл бұрын
16:22 Tail Recursion (5, 4, 3, 2, 1) 17:39 Head Recursion (1, 2, 3, 4, 5) 17:45 Time Complexity -> O(n), Memory Complexity -> O(n) (Call Stack space) 23:20 Time Complexity -> O(n), Memory Complexity -> O(n) (Call Stack space) 30:04 Fibonaacci (Recursive) Time Complexity -> O(2^n), Memory Complexity -> O(n) (Call Stack space) Fibonaacci (iterative) Time Complexity -> O(n), Memory Complexity -> O(1) 39:45 Let n = number of digits Time Complexity -> O(n), Memory Complexity -> O(n) (Call Stack space) 41:55 Exponentiation Time Complexity -> O(n), Memory Complexity -> O(n) (Call Stack space) 46:42 Fast Exponentiation Time Complexity -> O(log(n)), Memory Complexity -> O(log(n) (Call Stack space) 54:36 Array is Sorted or Unsorted Time Complexity -> O(n), Memory Complexity -> O(n) (Call Stack space) 1:00:00 Subset Time Complexity -> O(2^n), Memory Complexity -> O(n) (Call Stack space) 1:11:10 Jumping Problem Time Complexity -> O(3^n), Memory Complexity -> O(n) (Call Stack space) 1:15:13 Subsequence Time Complexity -> O(2^n), Memory Complexity -> O(n) (Call Stack space) 1:26:07 Permutation Time Complexity -> O( n * n! ), Memory Complexity -> O(n) (Call Stack space) 1:31:48 Source To Destination Let x = dest_x - src_x , y = dest_y - src_y Time Complexity -> O(x * y) Let distance between src to distance is d = dest_x - src_x + dest_y - src_y Space Complexity = O(n * m) + O(d) (Call Stack space) E-Mail Id : ishankbansal1111@gmail.com
@vivekkumar8413 жыл бұрын
@Ishank Bansal time complexity or memory complexity kaise nikalte hai bataoge bhai
@meanlyf45143 жыл бұрын
bhai kaha se sikha tumne dsa
@ishankbansal92393 жыл бұрын
@@vivekkumar841 discord par aaa jaao bta dungaa
@vivekkumar8413 жыл бұрын
@@ishankbansal9239 bhai I'd bata de apna
@ishankbansal92393 жыл бұрын
@@vivekkumar841 Bhai delete ho rha h mera message I don't know why Bhaiya ke discord par level 2 mein ishank search kar lenaaaa
@shivamsinha54163 жыл бұрын
16:20 Tail recursion 17:34 Head recursion Time complexity for counting code O(N) and space complexity for counting code O(N) 21:48 for factorial of large number use long int 23:34 TC O(N) and Memory complexity O(N) 29:59 yes it can be optimised, before optimization time complexity is O(2^N) n SC O(N) but if we use dynamic programming then time complexity will be O(N) 39:40 TC O(1) n SC O(1) 54:52 TC O(N) n SC O(N) 1:02:15 TC O(2^N) n SC O(N) 1:10:10 TC O(3^N) n SC O(N) 1:15:35 TC O(2^N) n SC O(N) 1:26:20 Permutations TC O(N*Log(N)) n SC -O(N) 1:31:30 Source To Destination TC- O(2^(n^2)) n SC O(n^2).
16:20 que 1. Tail recursion because processing came before the recursive call , solution found at 18:20 17:40 que 2. head recursion because recursive call is happening at the top solution at 18:38 time complexity: O(n) space complexity: O(n) 23:20 ques 3. T.C: O(N) S.C: O(N) 30:05 que 4. T.C : exponential S.C: o(n) if we consider the function call stack size, other wise o(1) we can use DP to avoid repeated work and other method is space optimized method T.C:O(N) S.C: O(1) 39:45 que:5 T.C: (Length of number) s.c: (length of number ) 46:50 que:6 t.c: o(log n) for fast exponentiation method 54:55 que:7 T.C: O(N) S.C: O(N) que:8 power set (recursion/bitmasking) t.c: o(2^n) S.C: o(n) que:9 max jump problem t.c: o(3^n) s.c: o(n) que:10 subsequence t.c o(2^n) s.c: o(n) que:11 permutation t.c: o(n*n!) que:12 source to destination t.c: o(mn) sc: o(mn)
@vaibhavsinhbihola13 жыл бұрын
16:20 Tail recursion bcz function call after printing 17:30 Head recursion bcz function call before printing Time complexity:- O(n) For factorial() Time complexity:-O(n) For Fibonacci () Time complexity:-O(n) For spell() Time complexity:-O(n)
@pratyayurade32473 жыл бұрын
*Fibonacci* Yes it can be done using loop. *For Loop* Time Complexity - O(n), Space complexity - O(1) *For Recursion* Time Complexity - 2^n, Space complexity - O(n) *Code using loop* int n; cin>>n; int first=0,second=1; if(n==0) { cout
@sarimkhan98973 жыл бұрын
16:25 time Complexity - O(n) & space Complexity - O(n) [function that prints 1,2,3,4,5 is example of head recursion and fuction that prints 5,4,3,2,1 is example of tail recursion] 17:36 time complexity - O(n) & space Complexity - O(n) 21:45 time Complexity-O(n) & space Complexity - O(n) 30:02 Time Complexity - O(2^n) & Space Complexity - O(n) 39:44 time complexity - O(length of number) & space Complexity-------- O( length of number) 46:53 time complexity - Log(n) 54:51 Time Complexity - O(n) & Space Complexity - O(n) 1:02:16 time complexicity - O(2^n) & space Complexity - O(n) 1:11:11 time complexity O(3^n) & space Complexity - O(N)
@rahul-ow9ep3 жыл бұрын
Q.1 (a) tailrecursion TC--> 0(n) | SC-->0(n). (b) headrecursion TC-->0(n) | SC-->0(n). Q.2 FACTORIAL TC-->0(n) SC-->0(n) Q.3 FABONACI SERIES VALA 29:56 (a). Is without recursion we can make code --> YES (shayad with the help of functions) (b). TC--> 0(2^n) (c). SC-->0(n) Q.4 REVERSE (4321) 39:30 TC-->0(1) SC-->0(1) Q.5 EXPONENT VALA 45:30 TC-->0(log n) SC-->0(1) Q.6 SORTED OR UNSORTED 53:45 TC-->0(n log n) SC-->0(n) Q.7 SUBSET VALA. TIME STEP 1:02 TC-->0(n*k) where n= number of elements & k= total subset/sum SC--> 0(K) Q.8 JUMP QUESTION 1:10 TC-->0(1) SC-->0(1) Q.9 SUBSEQUENCES 1:14 TC-->0(2^n) SC-->0(n) Q.10 permutations 1:14 TC-->0(length) SC-->0(n). (n=length) Q.11 source to destination TC-->0(U*R) SC-->0(D) Sir thank you you so much ❤️❤️❤️❤️❤️ Nice all questions Thank you very much ❤️❤️❤️❤️❤️ I will hope i will definitely crack top MNCs
@nipunkumar33843 жыл бұрын
16:25 it's a tail recursion because it is calling itself from last and base case is while n==0 so moving in reverse direction and 17:36 since we can also say this as tail because we are dealing with the tail and printing from the head.
@ashvinimeshram52423 жыл бұрын
16:24. Its tail recursion because it calling itself from last. 17:37. Its head recursion because call come before processing. 23:20. T.c. O(N). S.c. O(N) 30:04. Befire optimization Time complexity O(2^N) and space O(N) and we can optimise ut by doing with iterative method in O(N) time complexity. 39:40. Time complexity O(length of number) space complexity. O(length of no)
@bilalahmadmujaddadi75193 жыл бұрын
Whenever i stuck somewhere this man comes up with the solution ❤
@AadityaVermaCS-3 жыл бұрын
Absolutely!👍
@keshavmishra1083 жыл бұрын
💯
@nipunkumar33843 жыл бұрын
48:25 for i in range(len(num)-1): if nums[i]>nums[i-1] and i>0: array is sorted (another logic)
@adityarajcp3 жыл бұрын
16:26 Tail Recursion 17:35 Head Recursion 23:33 Time Complexity-O(n) Space complexity - O(n) 30:04 Time complexity -0(2^n) Space complexity - O(n) We can optimise using iterative method (Then we can do this in linear time and no stack space required) 39:42 Time complexity-0(length of number), space complexity - O(length of number) 46:54 Fast Exponentiation Time complexity-Log(n) 54:50 Time complexity - O(n) Space complexity -O(n) 1:02:15 Subset question Time complexity- 0(2^N) Space complexity -O(N) 1:11:10 Max 3 jump question (Time complexity-0(3^N) Space complexity -O(N))
@kushagrasaxena4313 жыл бұрын
16:27 Tail Recursion ( recursive call comes after processing ) 17:38 Head Recursion (when recursive call comes before processing) 23:35 S.C - O(n) T.C - O(n) 30:04 S.C - O(n) T.C - O(2^n) optimisation of code can be done using iterative approch (T.C will become O(n) that is linear and S.C will be O(1)) 39:47 T.C - O(no length) and S.C - O(no length ) 46:55 Fast Exponentiation T.C - Log(n) 54:51 T.C - O(n) S.C - O(n) 1:02:17 Subset question T.C will be O(2^N) and S.C will be O(N) 1:11:12 Max 3 jump question T.C will be O(3^N) and S.C will be O(N) 1:15:17 Subsequence Question T.C will be O( 2^N ) and S.C will be O(N) 1:26:21 Permutations question T.C will be O(N*Log(N) and S.C will be O(N) 1:31:30 Destination source T.C will be O(2^(n^2) and S.C will be O(n^2) DONE SIR ❤️❤️ Thank you kushagrasaxena2019@gmail.com
@siddharthkeshri56493 жыл бұрын
1-Factorial-Tc O(n) sc-O(n) 2-fibonacci-Tc-0(n) sc-O(n) Dp laga denge 3-Subsequence-TC-O(2^n) 4-Subset-TC-O(2^n) 5-Minimum Number of jumps-Tc O(n^n) 6-fast exponentiation-Tc O(logn) 7-Permutation of string(n^2*n!) 16:25 Tail Recursion O(n)
@NatureChampions Жыл бұрын
I solved a lot of recursion problems but I didn't understand the concept fully..but I didn't gave up...and still solving . Today after watching only 14 minutes of you video I am able to solve all the questions. Now I am thinking how silly mistakes I was doing. Actually I made it difficult for myself by knowing that recursion is very tough from most of educators. Thanks you sir.
@ishitasharma67242 жыл бұрын
29:53 Without using recursion : #include using namespace std; int fib(int index) { int c , a=0 , b=1 , i=0; while(i
@nikhildhiman07143 жыл бұрын
1. 16:25 Tail Recursion TC: O(n) SC: O(n) in recursion stack 2. 17:35 Head Recursion TC: O(n) SC: O(n) in recursion stack 3. 23:20 TC: O(n) SC: O(n) in recursion stack 4. 30:03 Before Optimization TC: O(2^n) SC: O(n) used in recursion stack Can be optimize using Loops 5. 39:40 TC: O(n) SC: O(n) 7. 53:00 TC: O(n) SC: O(n) 8. 1:00:00 TC: O(2^n) SC: O(n) 9. 1:09:00 TC: O(3^n) SC: O(n) 10. 1:14:10 TC: O(2^n) SC: O(n) 11. 1:20:25 TC: O(n*n!) SC: O(n) Thx bhiya 👍👍
@sloppybug98563 жыл бұрын
30:01. Time complexity is O (n sq) because function is called 2 times at every recursion Memory complexity is O (n) the max depth of tree Yes, iterative solution is the best way because for loop is used from 2 to n Time complexity is O(n) And space is 0(1) because the result is just swaped at every loop
@Shravankumar-wc2oi3 жыл бұрын
16:25 Tail Recursion 17:37 Head Recursion 23:33 T.C - O(n) S.C - O(n) 30:04 T.C - O(2^n) S.C - O(n) We can optimise using iterative method (Then we can do this in linear time and no stack space required) 39:44 T.C - O(length of number) and S.C - O 46:54 Fast Exponentiation TC - Log(n) 54:50 T.C - O(n) S.C - O(n) 1:02:15 Subset question TC - O(2^N) SC - O(N) 1:11:10 Max 3 jump question ( TC - O(3^N) SC- O(N)) 1:15:17 Subsequence Question ( TC - O( 2^N ) SC - O(N) ) 1:26:20 Permutations (TC - O(N*Log(N)) SC - O(N)
Sahi ans kya hai har question ka... Wo kha se dekhe??
@yugch11232 жыл бұрын
Superb bro, now having knowledge about recursions!
@pankajagrawal33293 жыл бұрын
1.Counting a)Tail recursion Time complexity: O(n) Space Complexity: O(n) b)Head recursion Time complexity: O(n) Space Complexity: O(n) 2.Factorial Time complexity: O(n) Space Complexity: O(n) 3.Fabonacci a)Using Recursion: Time complexity: T(n)=T(n-1)+T(n-2) it increase exponentially. Space Complexity: O(n) b)Time complexity and space complexity can be optimized using Iterative method where Time complexity: O(n) Space Complexity: O(1) 4.Spelling Time complexity: O(n) Space Complexity: O(n) here, n = number of digit in 'n'. 5.Exponent a)using normal method Time complexity: O(n) Space Complexity: O(n) b)using fast exponent method Time complexity: O(log(n)) Space Complexity: O(n) 6.Sorted-Unsorted Time complexity: O(n) Space Complexity: O(n) 7.Properset Time complexity: O(2^n) Space Complexity: O(n) 8.Stair problem Time complexity: O(2^n) Space Complexity: O(n) 9.String Subsequence Time complexity: O(2^n) Space Complexity: O(n) 10.String Permutation Time complexity: O(n*n!) Space Complexity: O(n) Thank you very much bhaiya for all of this.
@vikashkumarbasant86323 жыл бұрын
5: printSpelling Timecomplexity:logN (base 10) Space complexity:constant
@deepanshupratik25953 жыл бұрын
video gajab thi ......actually i knew recursion a little bit as I am a beginner but now i am confident about it
@triyabyadwal95673 жыл бұрын
1. Counting problem: TC- O(n) and SC- O(1) 2. Factorial: TC- O(n) and SC- O(1) {if we don't consider stack space} **factorial can also be calculated iteratively as recursion can be costly for large numbers. 3. Fibonacci Series: TC- O(2^n) and SC- O(n) **can be optimised using dp: TC-O(n) SC-O(n) Code: int fib(int n) { int f[n+1]; int i; f[0] = 0; f[1] = 1; for (i = 2; i
@harshsolanki7033 жыл бұрын
16:21 Tail Recursion (processing comes before the recursive call) TC - O(n) , SC - O(n) 17:46 Head Recursion (call comes before processing) TC - O(n) , SC - O(n) 23:33 TC - O(n) , SC - O(n) 30:08 Fibonacci is possible without recursion (is video se pehle bina recursion k hi kaam chalra tha 😅) Iterative approach of Fibonacci TC - O(n) TC - O(2^n) , SC - O(n) (recursive) 39:43 TC - O(log10(n)) / log n base 10 , SC - O(1) 46:54 TC - O(log(n)) , SC - O(log(n)) 54:48 TC - O(n) , SC - O(n) 1:02:19 TC - O(2^n) , SC - O(n) 1:11:11 TC - O(3^n) , SC - O(n) 1:15:15 TC - O (2^n) , SC - O(n) 1:26:19 TC - O(n*log(n)) , SC - O(n) 1:31:30 TC - O(2^(n^2)) , SC - O(n^2)
@priyankushkashyap82683 жыл бұрын
16:23 head recursion Time complexity 0(n) and space complexity is 0(n) 23:28 TC-->0(n) SC--->0(n) 39:41 TC-->0(log n) SC-->0(1)
@arindamdutta73693 жыл бұрын
16:17 Tail recursion 16:42 Head recursion 23:22 O(n) for tie and space complexity
@sahithichalla21663 жыл бұрын
1)Head Recursion 2)Tail Recursion 3)sc:o(n),tc:o(n) 4)we can solve using dynamic programming Tc of the code using recursion:o(2^n) Sc:o(n)
@lakshyasoni08113 жыл бұрын
1. Head Recursion 2. Tail Recursion 3. Space Complex. O(n), Time Complex. O(n) 4. It can be also solved using DP approach Time Complex of the code using recursion O(2^n) Space Complex. O(n)
@vikashkumarbasant86323 жыл бұрын
4: Fibonacci series Recurence relation: T(n) = K+2T(n/2) Timecomplexity:O(2^n) Space complexity:O(n) But we can do iterative approach because in this case Timecomplexity:O(n) Space complexity:O(1)
@kanupriya95973 жыл бұрын
16:25 Tail recursion 17:35 head recursion 23:33 T.C=O(n), S.C=O(n) 30:02 T.C=O(2^n), S.C=O(n), yes, we can optimise this code we can use memoisation and recursion but to optimise it further we can use bottom up dp in iterative manner 39:46 T.C=O(length of number), S.C=O(length of number) 46:37 T.C of fast exponentiation = O(log n) 1:02:11 subset or power set T.C=O(2^n), S.C=O(n) 1:11:10 staircase question T.C=O(3^n), S.C=O(n) 1:15:31 Subsequence T.C=O(2^n), S.C=O(n). yes, we can optimise this approach using dp 1:24:54 Premutation TC: O(n*n!), SC: O(n) email: kanupriya1125@gmail.com
@Kunalsingh-ef2lj3 жыл бұрын
16:20 Tail recursion hai kyuki recursive statement is the last statement in the function Time complexity - O(n) , space complexity - O(n) 17:38 Head recursion hai kyuki recursive statement is not the last statement in the function Time complexity - O(n) , space complexity - O(1) 23:25 Time complexity - O(n) , space complexity - O(n) 30:00 Before optimization Time complexity - O(2^n) , space complexity - O(n) It can be optimized by using an extra space, we can use an array we can store all the values so that we have to calculate the values only once and we can call it whenever required. I think isshi ko dynamic programming kehte hai par woh mujhe abhi aata nahi hai 😂😂 ok toh jab seekh loonga toh code kar lunga par space use karege toh Time complexity - O(n) and space complexity - O(n) hoga shayad. 39:43 Time complexity - O(logn) , space complexity - O(logn) 46:00 Time complexity - O(logn) 54:30 Time complexity - O(n) Space complexity - O(n) 1:02:30 Power set ----- Time complexity - O(2^n) , space complexity - O(n) 1:11:05 Time complexity - O(3^n) , space complexity - O(n) 1:15:15 Subsequence of string ---- Time complexity - O(2^n) , space complexity - O(n) Bhaiya bits se ho jayega ye question. public List AllPossibleStrings(String s) { int l=s.length(); int k=0; String str[]=new String[(1
@abhishekaaru3 жыл бұрын
16:20 Tail Recursion 17:30 Head Recursion Time :- O(n) Space :- O(n)
@abhayvaishnav3 жыл бұрын
Was waiting since morning. Dhanyawad bhaiyaji
@RamChoudhary3 жыл бұрын
16:25 tail recursion qki ye niche se upr jara h .... phle 5 print fir 4 fir 3 and so on ....
1. Head Recursion 2. Tail Recursion 3. Space Complexity O(n) , Time Complexity O(n) 4. It can be solved using DP approach Time complex of code using recursion O(2^n) Space Complexity O(n).
@talk-with-love3 жыл бұрын
16:25 head recursion, time complexity:O(n) space complexity:O(n) 17:46 tail recursion, time complexity:O(n) space complexity:O(n) 23:23 for factorial tc=O(n), sc=O(n) 30:04 fibnocii tc= golden ratio /pi(n) 39:40 Time complexity -.o(n),space complexity-> O(n) 46:50 TC->O(log(n)) 54:50 TC->O(N) 1:15:01 TC: O(2^n) SC: O(n)
@rishabhshukla96003 жыл бұрын
Bhaiyaa kaafi sahi on-point video tha, waiting for more content!!!
@tech_wizard93153 жыл бұрын
How was the video? Did this video helped you as a beginner to solve medium/hard level problem easily??
@harshkumaryadav24583 жыл бұрын
Kya baat h bhaiya ...aag lga di veere ...bhaiya abhi recursion hi NH ...stack ques dp graph hash sare data structures isi style me chahiye ...mza aa RHA h ...and I am sure aapki ye style Jo Hindi wali h ye aapko ek alg level pe le jayegi
@Live-hh6li3 жыл бұрын
All time and space complexity: 1. Counting T. C. - O(n) S. C. - O(n) 2. Factorial T. C. - O(n) S. C. - O(n) 3. Fibonacci T. C. - O(2^n) S. C. - O(n) 4. Spell the number T. C. - O(no of digits) S. C. - O(no of digits) 5. Binary Exponentiation T. C. - O(logn) S. C. - O(logn) 6. Sorted or unsorted T. C. - O(n) S. C. - O(n) 7. PowerSet T. C. - O(2^n) S. C. - O(n) 8. Stairs T. C. - O(3^n) S. C. - O(n) 9. Subsequence T. C. - O(2^n) S. C. - O(n) 10. Permutation T. C. - O(n^2) S. C. - O(n) 11. Source to Destination T. C. - O(2^n) S. C. - O(Length of Longest Path from source to Destination)
@Live-hh6li3 жыл бұрын
All time and space complexities are of recursive solutions
@tanishqbansal84623 жыл бұрын
1.1 TAIL RECURSIVE FUNCTION TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 1.2 HEAD RECURSIVE FUNCTION TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 2. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 3. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) OR USING BITS MANIPULATION AND RECURSION IS SLIGHTLY OPTIMISED. YES, ALSO DO WITH USING FOR LOOP WITHOUT RECURSION. 4. TIME COMPLEXITY- O(NO. OF DIGITS IN NUMBER) SPACE COMPLEXITY - O(n) 5. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 6. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 7. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 8. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 9. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n) 10. TIME COMPLEXITY-O(n) SPACE COMPLEXITY-O(n)
@raunak34063 жыл бұрын
Bro I was looking for the subset question's logic. Believe me this is the best I have ever seen!!!
@Satyam-nq3pd3 жыл бұрын
First of all, I would like to thank bubber bhaiya for making this video. Here are My answers to all Questions (q1 to q11). question 1 16:22 TC: O(N) and SC: O(N) -> for stack mem it is a tail recursion because the processing (work) occurs before the recursive call. 17:33 TC: O(N) and SC: O(N) -> for stack mem it is a head recursion because recursive call comes before processing (work ) in function. question 2 23:25 Factorial Problems : TC: O(N) and SC: O(N) --> stack mem question 3 30:04 Fibonacci Problem (Before optimization): TC: O(2^N) and SC: O(N)-->stack meme yes it can be optimized by using dynamic programming and iterative methods Here I am going to show an iterative method which takes : TC: O(N) and SC: O(1) int findFibonacci(n){ int a = 0, b = 1, c; //its take constant space so SC: O(1) if(n ==0){ return 0 } for(int i = 0; I < n; i++){ //Run max n times So TC: O(N) c = a+b; a= b; b = c; } return b; } here dynamic approach: TC:O(N) and SC(N) dpFibonacci(n) { if(n=1 || n= 0){ return n; } if(dp[n] != -1){ return dp[n] } dp[n] = dpFibonacci(n-1) + dpFibonacci(n-2); return dp[n] } question 4 39:42 TC:O(N) and SC:O(N) where N is a number of digits of a given number. question 5 41:56 TC:O(N) and SC: O(N) 45:56 TC: O(Log(N)) and SC: O(Log(N)) where N is the power of a given number like a^N; question 6 47:25 Sorted and unsorted Array Problem TC:O(N) and SC: O(N) question 7 54:58 subset problem : TC:O(2^N) and SC: O(N) question 8 1:11:08 max 3 jump stair problem TC:O(3^N) and SC: O(N) question 9 1:12:03 Subsequence Problem : TC:O(2^N) and SC:O(N) question 10 1:16:17 Parmuatation Problem : TC:O(n*n!) and SC: O(string length) question 11 It also takes exponential time. thank you for reading my answers. Again thanks bubber bhaiya . guys, please share this video to help others.
Why space O(n). Here we are not using any kind of data structure.. We are just printing directly
@NehaKumari-cx6un3 жыл бұрын
Reply plzz
@deviltvpublication9223 жыл бұрын
54321 head recursion O(n), space comp O(1) 12345 tail recursion O(n),space comp O(1) Iterative approach Fibonacci () { Int start =0,end=1; Count
@pratyayurade32473 жыл бұрын
39:42, Time Complexity (number of digits) , Space complexity (number of digits)
@salmanahmedkhan39793 жыл бұрын
itnay mazay se aur itnay piyare tareekay se Babbar bhaiya ne prhaya hai dil khush hogaya. Why we don't have teacher like you in our colleges and universities. Btw, lots of love from Pakistan
@tech_wizard93153 жыл бұрын
How was the video? Did this video helped you as a beginner to solve medium/hard level problem easily??
@salmanahmedkhan39793 жыл бұрын
@@tech_wizard9315 As a beginner it will take time to solve, however I am in my fifth semester of 4 year bachelor degree so I have a good grip. The video is perfect to learn recursion as a beginner. It is the well explained video I got on KZbin.
@tech_wizard93153 жыл бұрын
@@salmanahmedkhan3979 After seeing this video, Will I be able to solve Hard and medium level problems easily?
@salmanahmedkhan39793 жыл бұрын
@@tech_wizard9315 First you should be able to solve easy problem. Once you have a good understanding of how recursion works then you may solve medium problems. Also, don't just jump from solving one easy towards medium problems. First solve 15-20 easy problem then if you feel you understand recursion good then go for medium and after solving 10-15 medium problems then go for hard problems. That's what I recommend. Moreover, this video will help you in understanding basics of recursion. Hope it helps
@tech_wizard93153 жыл бұрын
@@salmanahmedkhan3979 where you able to solve Hard and medium level problems after watching this video?
@prakhardev50723 жыл бұрын
1) Tail Recursion Tc: O(N) and Sc: O(N) Head Recursion Tc: O(N) and Sc: O(N) 2) 21:44 TC: O(N) and SC: O(N) 3) Before optimization TC: O(2^N) and SC: O(N) After Optimization: TC: O(N) and SC: O(N) 4) TC: O(N) and SC: O(N) 5) Before optimization: TC: O(N) and SC: O(1) After optimization: TC: O(logn) and SC: O(1) 6) TC: O(N) and auxiliary space: O(N) 7) TC: O(N*(2^N)) and SC: O(N) 8) TC: O(3^N) and SC: O(N) 9) TC: O(2^N) and SC: O(N) 10) TC: O(N*N!) and SC: O(N) 11) 1:26:10 TC: O(4^(m*n)) and SC: O(n*m)
@ranuchaubey903 жыл бұрын
Thank you sir, this video is really helpfull for me , sir Aise hi hr topic p videos banate rheiye so that we can improve .
@tech_wizard93153 жыл бұрын
How was the video? Did this video helped you as a beginner to solve medium/hard level problem easily??
@ranuchaubey903 жыл бұрын
Yes , as I beginner I was not confident about recursion topic , but now I can solve questions , so yeah this video was really helpful for me
@tech_wizard93153 жыл бұрын
@@ranuchaubey90 are you able to solve Hard and medium level problems easily now after seeing this video?
@madhavsharma22083 жыл бұрын
firsrt question - (counting) head recursion and 2nd one is tail recursion with tc -O(n),sc-O(n) second question - (Factorial) tc-O(n),sc-O(n); third question - (fiboonaci) tc - 2^n , sc- 2^n; fourth question - (exponential)tc - O(n),sc- O(n); modified exponential - tc(logn) sc - (logn); fifth question - (arraysortedornot)tc - O(n),sc-O(n); sixth question - (powerset)tc-O(2^n),sc-O(2^n); seventh question - (substring)tc-O(2^n),sc-O(2^n); eightth question - (jump) tc-O(3^n),sc-O(3^n); backtracking abhi padhi nahi bahiya
@GulabSingh-iw5nr3 жыл бұрын
16:22 tail recursion 17:26 head recursion Fact : mc -O(n) Tc -O(n) 39:44. tc= mc = no of digits in number
@_SOHAMSAMANTA3 жыл бұрын
Q1. 16:20 Tail Recursion TC: O(n) MC: O(n) Q2. 17:30 Head Recursion TC: O(n) MC: O(n) Q3. 23:20 TC: O(n) MC: O(n) Q4. 30:00 Before Optimization TC: O(2^n) MC: O(n) Can be optimize using DP ,but i dont know DP yet properly Q5. 39:40 TC: O(n) MC: O(n) used in recursion stack + O(1) for mapping the number to its respective names( like 4 - 'four').Hence, effective space complexity will be O(n) where n is length of number Q6. 46:50 TC: O(log(n)) Q7. 54:50 TC: O(n) MC: O(n) Q8. 1:02:00 TC: O(2^n) MC: O(n) Q9. 1:10:00 TC: O(3^n) MC: O(n) Q10. 1:15:00 TC: O(2^n) MC: O(n) 11. 1:20:00 TC: O(n*n!) MC: O(n)
@siri33593 жыл бұрын
This series of you teaching us is extremely helpful bhaiya... C++ STL, and now Recursion ... more power for your planning and efforts... Thank you sooo much
@ankeshmahagaonkar32493 жыл бұрын
bhaiya bahot acha chal raaha hai , aisehi banate raho video
@Abhishekkumar-xd5lb3 жыл бұрын
1> print N to 1 : Tail recursion [TC - theta(n), SC- theta(n)] print 1 to N : Head recursion [TC - theta(n), SC- theta(n)] 2> Factorial : TC- O(n), SC- O(n) 3> Fibonacci : TC- O(2^n), SC- O(n) 4> TC :O(length of n) , SC- O(length of n) 5> TC-O(log n), SC- O(n) 6> TC- O(n), SC- O(n) 7>TC- O(2^n), SC- O(n) power set using bitwise - void PowerSet(string str) { int n = str.length(); int powSize = pow(2, n); for(int counter = 0; counter < powSize; counter++) { for(int j = 0; j < n; j++) { if((counter & (1
@tusharnain66523 жыл бұрын
You teach far better then Apna College C++ classes, You nailed it.
@ndroidLover3 жыл бұрын
Dont compare as both trying best to give us best content ever
@tusharnain66523 жыл бұрын
@@ndroidLover I will.
@gauravbaghel19083 жыл бұрын
Great explanation bhaiya, maza aa gya, or bhi topics pr bnao 1 shot videos ❤ i know how much time these videos take..great work
@dexter24743 жыл бұрын
Question 1 is tail recursion , because we make the recursive call at the end of the recursive function. Another one is head recursion . Time Complexity= O(n) Space Complexity= O(n)