When Should You Use Regression Methods?

  Рет қаралды 5,177

RichardOnData

RichardOnData

Күн бұрын

Пікірлер: 31
@paragonprogrammer1090
@paragonprogrammer1090 3 жыл бұрын
Your videos are always on point. You make Data science a lot simpler....thanks a lot for explaining in detail
@RichardOnData
@RichardOnData 3 жыл бұрын
My pleasure! That's the stated goal of my channel!
@arcadevampire
@arcadevampire 2 жыл бұрын
It would be great if could do a deep dive into generalized, lasso, ridge, elastic nets. Your explanations are always very straight forward. Cheers
@RichardOnData
@RichardOnData 2 жыл бұрын
This is coming up the pipeline soon. Thanks!
@kaushikroychowdhury7787
@kaushikroychowdhury7787 3 жыл бұрын
Plz make this type of videos , why and when to use different models ? Appreciate you work Thank you
@RichardOnData
@RichardOnData 3 жыл бұрын
I will try to do exactly that! "When should you use PCA" is right around the corner!
@gregmaland5318
@gregmaland5318 3 жыл бұрын
Wow! This was way over my head. Yet, I still think I got something out of it.
@jorislimonier
@jorislimonier 3 жыл бұрын
Currently writing my thesis on High Dimensional Regression Models. Such an interesting topic 👌🏻👌🏻 Great video !
@RichardOnData
@RichardOnData 3 жыл бұрын
Awesome! Thank you; yes, isn't it an exciting topic?
@jorislimonier
@jorislimonier 3 жыл бұрын
@@RichardOnData It is. Specifically LASSO and determining which parameters to throw away...pretty cool !
@chacmool2581
@chacmool2581 3 жыл бұрын
I see quite often the use of regression without checks for substitutions and model fit. I see people using SLR without understanding, in fact confusing linearity for collinearity when those two things are separate and distinct. I do think BLR is a bit trickier than SLR for two reasons. One, the coefficients that come out of the glm() function in R are logarithmic values so you need to exponentiate them. Two, the response variable is the log odds or just odds after coefficient exponentiation. The other tricky part of logistic regression are the assumption of linearity of continuous variables vs. the logit of the response to be checked with BoxTidwell.For OLR, the equal odds assumption to be checked with a Brant test.
@dmitrytkachuk2304
@dmitrytkachuk2304 3 жыл бұрын
Thanks for the video. Richard can you explain more about classification methods, for example when we should use log-regression, SVM or another methods? In modern data science log-regression (in your opinion) is still cool?
@bassthunder8111
@bassthunder8111 3 жыл бұрын
Great Video! In another video you could tackle an adjacent problem: "interpretable" ML methods like partial dependence profiles, variable importance measures and instance based methods.
@RichardOnData
@RichardOnData 3 жыл бұрын
Great suggestion! I think that would help a lot of people.
@vishalthatsme
@vishalthatsme 3 жыл бұрын
Using L1 for feature selection - I’ve seen it mentioned in various places but never explained clearly, in case you’re looking for future topic ideas 😉. Also, detecting/dealing with multicollinearity - tricky and a little confusing.... Also, GLMs... I could go on and on...
@RichardOnData
@RichardOnData 3 жыл бұрын
Those are three excellent video ideas. I'll roll them all into the video pipeline!
@vishalthatsme
@vishalthatsme 3 жыл бұрын
@@RichardOnData keep up the great work 👍🏽
@shyamgurunath5876
@shyamgurunath5876 3 жыл бұрын
Good tutorial Richard.Can you do a video on Linear regression Assumption & can I use ensemble of Linear & Ridge to find the response variable ?
@RichardOnData
@RichardOnData 3 жыл бұрын
You certainly can ensemble that way, though I've never done that myself nor heard of doing so. Now, ensembling the Lasso and Ridge Regression penalty parameters is an approach in and of itself known as the Elastic Net. I use that one all the time. Great video ideas!
@206Seattle
@206Seattle 3 жыл бұрын
Thank you Richard!
@unmanbarman8619
@unmanbarman8619 3 жыл бұрын
Hi can you please do a video for how much and what to learn in python for data science/ data analysis same as you did for sql
@Trazynn
@Trazynn 3 жыл бұрын
At university they only taught me the formulas with barely any context. And even those weren't complete. I had to learn everything else from KZbin.
@RichardOnData
@RichardOnData 3 жыл бұрын
Yeah..... I get the feeling that's a common experience for far too many. I hope this video was helpful.
@jasonloghry
@jasonloghry Жыл бұрын
I really enjoyed this video, so very helpful! Would you have any interest in making a video about the basics of interactions?
@moisesdiaz9852
@moisesdiaz9852 3 жыл бұрын
Great explanation as always
@prod.kashkari3075
@prod.kashkari3075 3 жыл бұрын
Ugh I hate when they label logistic regression as a classification algorithm in machine learning. It really isn’t right?
@RichardOnData
@RichardOnData 3 жыл бұрын
Logistic regression can be trained in ML style using stochastic gradient descent. While it's fitted values consist of the log odds of the event "success" (a quantity that is on a negative to positive infinity scale), this can be converted to a probability. This probability can then be used for classification purposes (i.e. if Observation 1 has >0.5 probability of being in Class A, classify them as Class A). Ergo, it's messy looking to define a "regression" method as a "classification algorithm", but it can indeed serve as such.
@prod.kashkari3075
@prod.kashkari3075 3 жыл бұрын
@@RichardOnData oh I see okay.
@professor-wright
@professor-wright 2 жыл бұрын
awesome
@jorgepableau
@jorgepableau 3 жыл бұрын
Nice shirt hehe 🧐
@RichardOnData
@RichardOnData 3 жыл бұрын
Thanks! Spring is here...
SHAP Values: An Overview
12:07
RichardOnData
Рет қаралды 2,5 М.
When Should You Use Random Forests?
13:26
RichardOnData
Рет қаралды 19 М.
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Inference vs. Prediction: An Overview
9:25
RichardOnData
Рет қаралды 12 М.
Learn Statistical Regression in 40 mins! My best video ever. Legit.
40:25
R or Python: Which Should You Learn in 2024?
14:42
RichardOnData
Рет қаралды 9 М.
The Bayesian Trap
10:37
Veritasium
Рет қаралды 4,2 МЛН
How Much Statistics Do You REALLY Need for Data Science?
15:20
RichardOnData
Рет қаралды 42 М.
AI can't cross this line and we don't know why.
24:07
Welch Labs
Рет қаралды 1,5 МЛН
Simon Sinek's Advice Will Leave You SPEECHLESS 2.0 (MUST WATCH)
20:43
Alpha Leaders
Рет қаралды 2,5 МЛН
How to Remember Everything You Read
26:12
Justin Sung
Рет қаралды 2,9 МЛН
20 R Packages You Should Know
30:42
RichardOnData
Рет қаралды 41 М.
Statistics 101: Multiple Linear Regression, The Very Basics 📈
20:26
Brandon Foltz
Рет қаралды 1,3 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.