Ridge Regression

  Рет қаралды 129,684

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 178
@xavierfournat8264
@xavierfournat8264 4 жыл бұрын
This is showing that the quality and value of a video is not depending on how fancy the animations are, but how expert and pedagogue the speaker is. Really brilliant! I assume you spent a lot of time designing that course, so thank you for this!
@ritvikmath
@ritvikmath 4 жыл бұрын
Wow, thanks!
@backstroke0810
@backstroke0810 2 жыл бұрын
Totally agree. I learn a lot from his short videos. Precise, concise, enough math, enough ludic examples. True professor mind.
@tzu-chunchen5139
@tzu-chunchen5139 Жыл бұрын
This is the best explanation of Ridge regression that I have ever heard! Fantastic! Hats off!
@rez_daddy
@rez_daddy 4 жыл бұрын
"Now that we understand the REASON we're doing this, let's get into the math." The world would be a better place if more abstract math concepts were approached this way, thank you.
@garbour456
@garbour456 3 жыл бұрын
good point
@GreenEyesVids
@GreenEyesVids 4 жыл бұрын
Watched these 5 years ago to understand the concept and I passed an exam. Coming back to it now to refresh my memory, still very well explained!
@ritvikmath
@ritvikmath 4 жыл бұрын
Nice! Happy to help!
@nadekang8198
@nadekang8198 5 жыл бұрын
This is awesome! Lots of machine learning books or online courses don't bother explaining the reason behind Ridge regression, you helped me a lot by pulling out the algebraic and linear algebra proofs to show the reason WHY IT IS THIS! Thanks!
@siddharthkshirsagar2545
@siddharthkshirsagar2545 5 жыл бұрын
I was searching for ridge regression on the whole internet and stumbled upon this is a video which is by far the best explanation you can find anywhere thanks.
@zgbjnnw9306
@zgbjnnw9306 2 жыл бұрын
It's so inspiring to see how you get rid of the c^2! I learned Ridge but didn't know why! Thank you for making this video!
@taareshtaneja7523
@taareshtaneja7523 6 жыл бұрын
This is, by far, the best explanation of Ridge Regression that I could find on KZbin. Thanks a lot!
@BhuvaneshSrivastava
@BhuvaneshSrivastava 5 жыл бұрын
Your data science videos are the best I have seen on KZbin till now. :) Waiting to see more
@ritvikmath
@ritvikmath 5 жыл бұрын
I appreciate it!
@RobertWF42
@RobertWF42 Жыл бұрын
Excellent video! One more thing to add - if you're primarily interested in causal inference, like estimating the effect of daily exercise on blood pressure while controlling for other variables, then you want an unbiased estimate of the exercise coefficient and standard OLS is appropriate. If you're more interested in minimizing error on blood pressure predictions and aren't concerned with coefficients, then ridge regression is better. Also left out is how we choose the optimal value of lambda by using cross-validation on a selection of lambda values (don't think there's a closed form expression for solving for lambda, correct me if I'm wrong).
@bettychiu7375
@bettychiu7375 5 жыл бұрын
This really helps me! Definitely the best ridge and lasso regression explanation videos on KZbin. Thanks for sharing! :D
@q0x
@q0x 9 жыл бұрын
I think its explained very fast, but still very clear, for my level of understanding its just perfect !
@alecvan7143
@alecvan7143 5 жыл бұрын
Amazing video, you really explained why we do things which is what really helps me!
@TahaMVP
@TahaMVP 6 жыл бұрын
best explanation of any topic i've ever watched , respect to you sir
@murraystaff568
@murraystaff568 8 жыл бұрын
Brilliant! Just found your channel and can't wait to watch them all!!!
@SarahPourmolamohammadi
@SarahPourmolamohammadi 2 жыл бұрын
You are the best of all.... you explained all the things,,, so nobody is gonna have problems understanding them.
@yxs8495
@yxs8495 8 жыл бұрын
This really is gold, amazing!
@nikunjgattani999
@nikunjgattani999 3 жыл бұрын
Thanks a lot.. I watched many videos and read blogs before this but none of them clarified at this depth
@Lisa-bp3ec
@Lisa-bp3ec 7 жыл бұрын
Thank you soooo much!!! You explain everything so clear!! and there is no way I couldn't understand!
@mikeperez4222
@mikeperez4222 3 жыл бұрын
Anyone else get anxiety when he wrote with the marker?? Just me? Felt like he was going to run out of space 😂 Thank you so much thoo, very helpful :)
@surajshivakumar5124
@surajshivakumar5124 3 жыл бұрын
This is literally the best video on ridge regression
@akino.3192
@akino.3192 7 жыл бұрын
You, Ritvik, are simply amazing. Thank you!
@soudipsanyal
@soudipsanyal 6 жыл бұрын
Superb. Thanks for such a concise video. It saved a lot of time for me. Also, subject was discussed in a fluent manner and it was clearly understandable.
@teegnas
@teegnas 4 жыл бұрын
These explanations are by far the best ones I have seen so far on youtube ... would really love to watch more videos on the intuitions behind more complicated regression models
@abhichels1
@abhichels1 8 жыл бұрын
This is gold. Thank you so much!
@cu7695
@cu7695 7 жыл бұрын
I subscribed just after watching this. Great foundation for ML basics
@theoharischaritidis4173
@theoharischaritidis4173 7 жыл бұрын
This really helped a lot. A big thanks to you Ritvik!
@babakparvizi2425
@babakparvizi2425 6 жыл бұрын
Fantastic! It's like getting the Cliff's Notes for Machine Learning. These videos are a great supplement/refresher for concepts I need to knock the rust off of. I think he takes about 4 shots of espresso before each recording though :)
@aDifferentHandle
@aDifferentHandle 6 жыл бұрын
The best ridge regression lecture ever.
@Viewfrommassada
@Viewfrommassada 5 жыл бұрын
I'm impressed by your explanation. Great job
@ritvikmath
@ritvikmath 5 жыл бұрын
Thanks! That means a lot
@ethanxia1288
@ethanxia1288 9 жыл бұрын
Excellent explanation! Could you please do a similar video for Elastic-net?
@nickb6811
@nickb6811 8 жыл бұрын
So so so very helpful! Thanks so much for this genuinely insightful explanation.
@charlesity
@charlesity 4 жыл бұрын
Stunning! Absolute gold!
@wi8shad0w
@wi8shad0w 4 жыл бұрын
seriously!!!
@mortezaabdipour5584
@mortezaabdipour5584 6 жыл бұрын
It's just awesome. Thanks for this amazing explanation. Settled in mind forever.
@Krishna-me8ly
@Krishna-me8ly 9 жыл бұрын
Very good explanation in an easy way!
@yanlinwang5703
@yanlinwang5703 3 жыл бұрын
The explanation is so clear!! Thank you so much!!
@jhhh0619
@jhhh0619 9 жыл бұрын
Your explanation is extremely good!
@mohamedgaal5340
@mohamedgaal5340 2 жыл бұрын
I was looking for the math behind the algorithm. Thank you for explaining it.
@ritvikmath
@ritvikmath 2 жыл бұрын
No problem!
@OmerBoehm
@OmerBoehm 2 жыл бұрын
Brilliant simplification of this topic. No need for fancy presentation to explain the essence of an idea!!
@aarshsachdeva5785
@aarshsachdeva5785 7 жыл бұрын
You should add in that all the variables (dependent and independent) need to be normalized prior to doing a ridge regression. This is because betas can vary in regular OLS depending on the scale of the predictors and a ridge regression would penalize those predictors that must take on a large beta due to the scale of the predictor itself. Once you normalize the variables, your A^t*A matrix being a correlation matrix of the predictors. The regression is called "ridge" regression because you add (lambda*I + A^t*A ) which is adding the lambda value to the diagonal of the correlation matrix, which is like a ridge. Great video overall though to start understanding this regression.
@vishnu2avv
@vishnu2avv 7 жыл бұрын
Awesome, Thanks a Million for great video! Searching you have done video on LASSO regression :-)
@canernm
@canernm 4 жыл бұрын
Hi and thanks fr the video. Can you explain briefly why when the m_i and t_i variables are highly correlated , then the estimators β0 and β1 are going to have very big variance? Thanks a lot in advance!
@lanag873
@lanag873 2 жыл бұрын
Hi same question here😶‍🌫
@e555t66
@e555t66 Жыл бұрын
I don't have money to pay him so leaving a comment instead for the algo. He is the best.
@sanketchavan8
@sanketchavan8 7 жыл бұрын
best explanation on ridge reg. so far
@abhijeetsingh5049
@abhijeetsingh5049 8 жыл бұрын
Stunning!! Need more access to your coursework
@xwcao1991
@xwcao1991 3 жыл бұрын
Thank you. I make the comment because I know I will never need to watch it again! Clearly explained..
@ritvikmath
@ritvikmath 3 жыл бұрын
Glad it was helpful!
@wi8shad0w
@wi8shad0w 4 жыл бұрын
THIS IS ONE HELL OF A VIDEO !!!!
@intom1639
@intom1639 6 жыл бұрын
Brilliant! Could you make more videos about Cross validation, RIC, BIC, and model selection.
@SUBHRASANKHADEY
@SUBHRASANKHADEY 6 жыл бұрын
Shouldn't the radius of the Circle be c instead of c^2 (at time around 7:00)?
@RLDacademyGATEeceAndAdvanced
@RLDacademyGATEeceAndAdvanced 2 жыл бұрын
Excellent approach to discuss Lasso and Ridge regression. It could have been better if you have discussed how Lasso yields sparse solutions! Anyway, nice discussion.
@llmstr
@llmstr Ай бұрын
in your drawing at 9:00, if the level curves is reverted back to 3D graph, is the axis that going up the loss function? just want to clarify. thanks!
@Thaifunn1
@Thaifunn1 9 жыл бұрын
excellent video! Keep up the great work!
@nicolasmanelli7393
@nicolasmanelli7393 2 жыл бұрын
I think it's the best video ever made
@HeduAI
@HeduAI 7 жыл бұрын
I would trade diamonds for this explanation (well, allegorically! :) ) Thank you!!
@Sytch
@Sytch 6 жыл бұрын
Finally, someone who talks quickly.
@prabhuthomas8770
@prabhuthomas8770 6 жыл бұрын
SUPER !!! You have to become a professor and replace all those other ones !!
@LossAndWaste
@LossAndWaste 6 жыл бұрын
you are the man, keep doing what you're doing
@youyangcao3837
@youyangcao3837 8 жыл бұрын
great video, the explanation is really clear!
@JC-dl1qr
@JC-dl1qr 7 жыл бұрын
great video, brief and clear.
@sachinrathi7814
@sachinrathi7814 3 жыл бұрын
Can anyone explain the statement "The efficient property of any estimator says that the estimator is the minimum variance unbiased estimator", so what is minimum variance denotes here.
@sagarsitap3540
@sagarsitap3540 5 жыл бұрын
Thanks! why lamba cannot be negative? What if to improve variance it is need to increase the slope and not decrease?
@tsrevo1
@tsrevo1 7 жыл бұрын
Sir, a question about 4:54: I understand that in tax/income example the VARIANCE of the beta0-beta1's is high, since there's an additional beta2 effecting things. However, the MEAN in the population should be the same, even with high variance, isn't it so? Thanks in advance!
@shiva6016
@shiva6016 7 жыл бұрын
simple and effective video, thank you!
@nickwagner5173
@nickwagner5173 6 жыл бұрын
We start out by adding a constraint that beta 1 squared + beta 2 squared must be less than c squared, where c is some number we choose. But then after choosing lamda, we minimize F and c ends up having no effect at all on our choice of the betas. I may be wrong but it doesn't seem like c has any effect on our choice of lambda either. I find it strange that we start out with the criteria that beta 1 squared + beta 2 squared must be less than c squared, but the choice of c is irrelevant. If someone can help me un-boggle my mind that would be great.
@RobertWF42
@RobertWF42 Жыл бұрын
Good question - I think it has to do with using the method of Lagrange multipliers to solve the constrained OLS optimization problem. The lambda gets multiplied by the expression in the parentheses at 11:17, which includes the c squared term. So whatever c squared value you choose, it's going to be changed anyways when you multiply by the lambda.
@kamesh7818
@kamesh7818 6 жыл бұрын
Excellent explanation, thanks!
@adityakothari193
@adityakothari193 7 жыл бұрын
Excellent explanation .
@sasanosia6558
@sasanosia6558 6 жыл бұрын
Amazingly helpful. Thank you.
@prateekcaire4193
@prateekcaire4193 Жыл бұрын
It is unintuitive that we are constraining weights(betas) within value c^2, yet the regularization expression does not include the c but rather sum of squared weights. Certainly I am missing something here. Alternatively, why adding a sum of squared betas(or weights) to the cost function help optimize beta that stays within constraint so that betas don't become large and vary across datasets?
@kartikkamboj295
@kartikkamboj295 5 жыл бұрын
Dude ! Hats off 🙏🏻
@tamoghnamaitra9901
@tamoghnamaitra9901 7 жыл бұрын
Beautiful explanation
@myazdani2997
@myazdani2997 7 жыл бұрын
I love this video, really informative! Thanks a lot
@Theateist
@Theateist 6 жыл бұрын
Is the reason to not choose big LAMBDA because we maight get underfitting? If we choose big LAMBDA we get small W and then the output function (hypothesis) won’t reflect our data and we might see underfitting.
@faeritaaf
@faeritaaf 7 жыл бұрын
Thank you! Your explaining is really good, Sir. Do you have time to make a video explaining the adaptive lasso too?
@vinceb8041
@vinceb8041 4 жыл бұрын
Can anyone help me understanding the effects of multicollinearity? I understand that the estimators will be highly variable, but why would they be very large?
@benxneo
@benxneo 4 жыл бұрын
thats actually an interesting question, have you found an explanation to this? I seem to only be able to say that regression depends on variables to be independent on each other, and multicolinearity makes it sensitive to small changes. But why is it that coefficients are larger I cant seem to understand.
@adarshnamdev5834
@adarshnamdev5834 4 жыл бұрын
@ritvik when you said that the estimated coefficients has small variance does that implies the tendency of obtaining different estimate values of those coefficients ? I tend to confuse this term 'variance ' with the statistic Variance (spread of the data!).
@benxneo
@benxneo 4 жыл бұрын
Variance is the change in prediction accuracy of ML model between training data and test data. Simply what it means is that if a ML model is predicting with an accuracy of "x" on training data and its prediction accuracy on test data is "y" Variance = x - y A smaller variance would thus mean the model is fitting less noise on the training data, reducing overfitting. this definition was taken from: datascience.stackexchange.com/questions/37345/what-is-the-meaning-of-term-variance-in-machine-learning-model Hope this helps.
@adarshnamdev5834
@adarshnamdev5834 4 жыл бұрын
@@benxneo thanks mate!
@zw7453
@zw7453 3 жыл бұрын
best explanation ever!
@ronithsinha5702
@ronithsinha5702 6 жыл бұрын
Can someone explain why does Ridge regression leads to shrinkage of co-efficients but not entirely zero co-efficients, whereas Lasso causes some co-efficients to become zero entirely.
@mnwepple
@mnwepple 9 жыл бұрын
Awesome video! Very intuitive and easy to understand. Are you going to make a video using the probit link?
@abeaumont10
@abeaumont10 6 жыл бұрын
Great videos thanks for making it
@meysamsojoudi3947
@meysamsojoudi3947 3 жыл бұрын
It is a brilliant video. Great
@brendachirata2283
@brendachirata2283 6 жыл бұрын
hey, great video and excellent job
@eDogBomb
@eDogBomb 7 жыл бұрын
What is the intuition behind putting the constraint on the size of the Beta coefficient rather than the standard errors of the Beta coefficient?
@Hazit90
@Hazit90 8 жыл бұрын
excellent video, thanks.
@TURBOKNUL666
@TURBOKNUL666 8 жыл бұрын
great video! thank you very much.
@kxdy8yg8
@kxdy8yg8 6 жыл бұрын
This is gold indeed!
@msloryg
@msloryg 6 жыл бұрын
Thanks for this really helpful video! Could you explain why the independent variables in A should be standardized for Ridge and Lasso Regression?
@dimar4150
@dimar4150 6 жыл бұрын
Can someone explain what the level curves mean?
@carlitors
@carlitors 6 жыл бұрын
Google contour plots, not something that can be easily explained on a video. Usually taught in first few lessons of Calculus III.
@zhongshanhu7376
@zhongshanhu7376 9 жыл бұрын
very good explanation in an easy way!!
@hunarahmad
@hunarahmad 7 жыл бұрын
thanks for the nice explanation
@SiDanil
@SiDanil 7 жыл бұрын
what the "level curve" means?
@xiaoguangzhao34
@xiaoguangzhao34 7 жыл бұрын
awesome video, thank you very much!
@zehuilin8783
@zehuilin8783 4 жыл бұрын
Hey Ritvik, I have a question about this one, I don't really know why we are choosing the point that is far from the origin point. So which direction does the gradient descent and why? Please help me out here, thank you so much!
@dorukhansergin9831
@dorukhansergin9831 8 жыл бұрын
Thank You, Great Video! Just a possbile correction, at 6:35 shouldn't the radius be c instead of c^2?
@volintine
@volintine 8 жыл бұрын
Dorukhan Sergin probably late, but no equation of circle is x^2 + y^2 = r^2
@kevinwong8020
@kevinwong8020 4 жыл бұрын
I was taught that the name Ridge Regression comes from the lambda I matrix. It looks like a ridged staircase shape.
@ibrahimkarabayir8963
@ibrahimkarabayir8963 9 жыл бұрын
nice video , I have a question: lambda depends on c, isnt it?
@JuPeggy
@JuPeggy 7 жыл бұрын
excellent video! thank you!
@jakobforslin6301
@jakobforslin6301 2 жыл бұрын
You are awesome!
@ibrahimkarabayir8963
@ibrahimkarabayir8963 9 жыл бұрын
and , is c a value that minimizes VIF value?
@justinm1307
@justinm1307 7 жыл бұрын
this is great stuff
@nickwagner5173
@nickwagner5173 6 жыл бұрын
also, why can't we solve for lamda and the betas by taking partial derivatives and setting each equation to zero and then solve the system of equations?
Lasso Regression
7:18
ritvikmath
Рет қаралды 86 М.
Ordinary Least Squares Regression
17:46
ritvikmath
Рет қаралды 47 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Ridge Regression for Beginners!
7:36
Prof. Ryan Ahmed
Рет қаралды 69 М.
Bayesian Linear Regression : Data Science Concepts
16:28
ritvikmath
Рет қаралды 89 М.
In Statistics, Probability is not Likelihood.
5:01
StatQuest with Josh Starmer
Рет қаралды 1,3 МЛН
Polynomial regression
8:57
Mike X Cohen
Рет қаралды 96 М.
Linear regression (6): Regularization
8:30
Alexander Ihler
Рет қаралды 168 М.
Intuitive Explanation of Ridge / Lasso Regression
18:50
PawarBI
Рет қаралды 14 М.
Ridge Regression (L2 Regularization)
9:54
Endless Engineering
Рет қаралды 17 М.
Ridge vs Lasso Regression, Visualized!!!
9:06
StatQuest with Josh Starmer
Рет қаралды 272 М.
Regularization - Explained!
12:44
CodeEmporium
Рет қаралды 18 М.
Logistic Regression - Predicting Basketball Wins
13:01
ritvikmath
Рет қаралды 24 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН