Introductory Fluid Mechanics L1 p6: Acceleration - Material Derivative

  Рет қаралды 59,702

Ron Hugo

Ron Hugo

Күн бұрын

Пікірлер: 28
@stati5tik
@stati5tik 5 ай бұрын
at 6:16 shouldnt (v dot nabla)v yield a vector which is multiplied component wise by the divergence of the vector?
@nashs.4206
@nashs.4206 7 жыл бұрын
How is it possible that dx/dt = u, if u = u(x,y,z,t)? We are using d, not ∂, which means that x only has a dependence on time (i.e. x is a univariate function). So it's like saying d/dt (f(x)) = 2x*z*t*y. Where/how do the other variables (y,z,t) come into play if we're using the total derivative and not partial derivative?
@mdkashif2560
@mdkashif2560 3 жыл бұрын
There is some problem in his derivation. Though his results are correct!
@williamjuniorolivaburgos7906
@williamjuniorolivaburgos7906 3 жыл бұрын
I think that if you consider x y and z also as functions of t you can derive the equation although I am not so sure why would that work because of the eulerian focus of the thing
@yousefzeehk
@yousefzeehk 2 жыл бұрын
it's because these equations were driven from a lagrangian point of view of the particle so u(t) is only a function of t. you're basically applying it along the pathline not across multiple pathlines or another fluid particles where u(y,z,x,t) would be a function of x,y,z,t .
@remojanja9326
@remojanja9326 2 жыл бұрын
Dude u Is the x component So i think you can Just take the derivative of the position with respect to time
@remojanja9326
@remojanja9326 2 жыл бұрын
@@yousefzeehkyess
@KakaG247
@KakaG247 8 жыл бұрын
how does that acceleration equatio come out to be. which laws of partial derivatives are you using. that is what i want to know
@Peter_1986
@Peter_1986 7 жыл бұрын
You can figure out the terms for the material derivative by drawing a tree diagram. In this case the arbitrary scalar or vector (let's call it "f") is a function of x, y, z and t, and then x, y and z are in turn functions of t. If you draw four branches from f and write x, y, z and t at the end of those branches, and then draw branches from x, y and z and have all of those branches end with t, then you can easily create terms which all end with a time derivative. For example, the branch from f to x will give you ∂f/∂x (it's a partial derivative because the function f depends on x, y, z and t, and you are taking a derivative of only x), and then the branch from x to t gives you dx/dt --- now, multiply those factors together to get (∂f/∂x)⋅(dx/dt). Then do the same thing for y and z to get (∂f/∂y)⋅(dy/dt) and (∂f/∂z)⋅(dz/dt) and then use the same method for the branch from f to t to get ∂f/∂t, and then finally add up all these four terms to get Df/Dt = (∂f/∂x)⋅(dx/dt) + (∂f/∂y)⋅(dy/dt) + (∂f/∂z)⋅(dz/dt) + ∂f/∂t.
@cooperjacob4548
@cooperjacob4548 3 жыл бұрын
@Yusuf Malcolm Definitely, I've been watching on KaldroStream for since december myself :)
@devinjason6841
@devinjason6841 3 жыл бұрын
@Yusuf Malcolm Definitely, I've been watching on kaldrostream for since december myself :)
@izaiahtyler3385
@izaiahtyler3385 3 жыл бұрын
@Yusuf Malcolm yup, have been watching on kaldroStream for years myself :)
@PeterTargonski
@PeterTargonski Жыл бұрын
can anybody give me the intro song name????
@ayeshaabdullah2267
@ayeshaabdullah2267 6 жыл бұрын
what is local accelaration and convevtive accelration,,,you shuold telll about it too
@xtheslipknotmaggotx
@xtheslipknotmaggotx 8 жыл бұрын
i dont really get why after applying the chain law we say that it is equal to the divergence of velocity multiplied by it
@chaosui3169
@chaosui3169 8 жыл бұрын
the first V is the u,v,w in the expression, the later V is in the dv/dx,dv/dy,dv/dz. Hope this helps
@A.Hisham86
@A.Hisham86 20 күн бұрын
it's still doesn't make sense mathematically!! how can the gradient operator work on the vector field? the gradient works only on the scalar field, the divergent does.
@zdravkaivanova5652
@zdravkaivanova5652 5 жыл бұрын
Thank you!
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 💐💐💐💐
@md.akiduzzamanabir3815
@md.akiduzzamanabir3815 2 жыл бұрын
thank you so much sir
@cristhiantenorio1654
@cristhiantenorio1654 10 ай бұрын
Saludos a la profesora Iris Domínguez de Mecánica de Fluidos. Acá, estudiando para el parcial de mañana. Qué nervios
@bakr6405
@bakr6405 6 жыл бұрын
Thank you
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 💐💐💐💐
@controlroomq
@controlroomq Ай бұрын
You look like Joel from The Last of Us series
@AdamDvořák-y4n
@AdamDvořák-y4n 3 ай бұрын
No, this is not how it works.
@Ramchandra-jd8vs
@Ramchandra-jd8vs Жыл бұрын
ewqe
Fluid Mechanics: Topic 10.2  - The material derivative
5:39
CPPMechEngTutorials
Рет қаралды 64 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
Material derivative
9:07
Brian Storey
Рет қаралды 35 М.
The Material Derivative | Fluid Mechanics
11:14
Faculty of Khan
Рет қаралды 31 М.
Fluid Acceleration and Material Derivative Animation #1
4:41
Aside: The material derivative
11:58
learnfluidmechanics
Рет қаралды 11 М.
Lagrangian and Hamiltonian Mechanics in Under 20 Minutes: Physics Mini Lesson
18:33
How to STUDY so FAST it feels like CHEATING
8:03
The Angry Explainer
Рет қаралды 2,3 МЛН
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН