I think a confounding variable is an extraneous variable (non-treatment) variable which we are not testing in our experiment / study but it (the confounding / extraneous variable) has an effect on the response variable. I will be glad if I'm corrected but that's how I understand this concept. Thank you from Uganda East Africa
@brishannahinton6508 жыл бұрын
thank you so much for this!!! I just was NOT understanding confounding variables but you made it so easy so thank you sincerely from the bottom of my heart! -a psychology student
@docrock155 жыл бұрын
Put playback speed at 1.25x Thank me later
@duartesilva79074 жыл бұрын
I'd say 1.5x. And it's still too slow..
@laylajameel18363 жыл бұрын
I would say 2x
@smurfaka7 жыл бұрын
Thanks for a good video. Not sure if the arrow from smoking coronary heart disease should be double though.
@rossc81602 жыл бұрын
Agreed - coronary heart disease does not cause smoking so it should be a one way arrow. Otherwise this is very good.
@KK-rh6cd3 жыл бұрын
It was great explained, this really helps me to complete my assignment. Thank you for making this video.
@Aadicura_Taniya_Time Жыл бұрын
Thank you!! Very excellent video
@tomf.736010 жыл бұрын
Thank you so much for posting these videos! Very well explained and clear. It will definitely help me doing my Epidemiology exam. ;)
@tsosamph_ches58328 жыл бұрын
Oh my goodness, you take the absolute sting out of epidemiology. Thank you!
@lisama27483 жыл бұрын
Omg I love u after like 8 years... u just saved my test
@sdal42444 жыл бұрын
Firstly. Thank you Liz for this, you saved my Life. Put playback speed at 1.5x if you are native speaker. Put playback speed at 1.25x if English is second language. Thank me later
@siIverspawn4 жыл бұрын
I'm not a native speaker. I put it at 1.75x
@panchitoborja5 жыл бұрын
Madam you are truly extraordinary! Very well and clearly explained!
@tymothylim65503 жыл бұрын
Excellent video! Liked how it's clear regarding the issue of establishing causal relationships! :)
@yvonneurquieta18647 жыл бұрын
Thank you Elizabeth! greatly appreciated! Do you have any videos for Effect modifier by any chance?
@KhadijahYeedah9 ай бұрын
Thank you so much for explaining ❤️❤️ anyone else from 2024 😍??
@jazzyproductions98064 жыл бұрын
I was looking through my playlist from when I was in 2nd-5th grade and I came across this- I’m honestly so confused and concerned
@黄昭-z7w9 жыл бұрын
I am wondering does the present of confounding always mean a spurious association between risk factor and outcome? Is it possible that confounding can also mask the association between them?
@ABo-jr8pg5 жыл бұрын
It can! It just depends on which relattionships are positive and which ones are negative.
@asaiasoluna33444 жыл бұрын
how does confounding variable affect the validity of the study?
@highndreamin2 жыл бұрын
thank you u are so good at explaining that i understood just with the first example thank you so much
@MrGotro12 жыл бұрын
wouldn't age and physical activity be negatively related. As age goes up, physical activity goes down?
@estherernest53535 жыл бұрын
At last i came to understand the concept of confounding.. thank you indeed
@ABo-jr8pg5 жыл бұрын
Isn't fluid intake related to blood pressure though?
@Moebik4 жыл бұрын
Where were you? I finally find my place to rest. Thank you so much
@siddarthramkumar87635 жыл бұрын
Could it be both?
@shortandsweet2767 Жыл бұрын
Can you explain about blocking variable in statistics, please?
@toyinokunuga36053 жыл бұрын
Thank you so much!! That was made so easy to understand xx
@HeyYall398 Жыл бұрын
Excellent 👌👍
@jeneseJonEs5 жыл бұрын
How do I include confounding in a review question?
@AnkushSharma-zv5hv6 жыл бұрын
last two examples cleared everything
@sherinvgeorge68055 жыл бұрын
Excellent video, thanks..
@wenkangma43019 жыл бұрын
Come before my epid exam. Clear and helpful. Thank you!
@sabrinayasmin13597 жыл бұрын
Awesome explanation
@varsshasangani86994 жыл бұрын
Can u explain confounding in handedness
@servicetothecross89142 жыл бұрын
Best explanation ever!!!!! 🤩🤩🤩🤩🤩
@loneayat19736 жыл бұрын
Thanks mam What kind of variable now blood pressure is ..... Which is caused by during experiment
@extramiles38319 жыл бұрын
total? partial? and balanced confounding? please :)
@SoichiHayashi20142 ай бұрын
Hello! Thank you for this video. Everything made sense until the very last example. Earlier, you gave the example of "young age" as confounder, but then you replaced that with blood pressure and all the sudden it is not a confounder. I am failing to see the difference. Why could "age" be a confounder but not "blood pressure"?
@vivianalomeli22544 жыл бұрын
I WISH you were my professor. Mine is so bland. I like your teaching
@furongli3618 жыл бұрын
I am wondering whether those arrow directions are right, in particular to physical activity and age
@GradualReportSerbia7 жыл бұрын
Looks like there is an error in there
@hemoisthebestemo12346 жыл бұрын
The arrows are correct. in this example she was saying that’s it’s a negative (inverse) correlation, meaning that the younger you are the less likely you’re getting MI, and the more you engage in physical activity the less likely you’re of getting MI
@hemoisthebestemo12346 жыл бұрын
The confounding factor is that younger people are more likely to to exercise so it’s hard to tell which of these two is protective from MI
@aidangollaglee35314 жыл бұрын
Yeah they were wrong- she drew young age as a mediator. To be a confounder you need arrows pointing from young age to both physical activity and MI
@mustafeibrahim-xx1fk Жыл бұрын
@@aidangollaglee3531 i agree you right. i was thinking like that.
@zahirraihan24025 жыл бұрын
Great!! Helpful. Thanks
@muwongejosephjunior61318 жыл бұрын
Thank you, understood it better watching this video
@hashemfathi16464 жыл бұрын
Best explanation ever
@archanam55224 жыл бұрын
Nice explanation thank you mam
@persephone10153 жыл бұрын
This was amazing, thank you!
@adityachouhan55897 жыл бұрын
classic explanation
@wisamtariq44125 жыл бұрын
Great explanation... Many thanks.
@yasiralsarraj92358 жыл бұрын
Super helpful... really appreciate the effort
@omarkhaled90264 жыл бұрын
thank you, i hope my doctor teach like you
@TheProfessor19086 жыл бұрын
Awesome! Thanks.
@theobserver56005 жыл бұрын
Best explanation ever! Thank you so much
@midozakaria79767 жыл бұрын
really merci ...v beutiful videos
@d7omi1114 жыл бұрын
thank you, I was about to give up.
@youssefnasrallah16604 жыл бұрын
Thank you a lot . its so helpful
@austina696 Жыл бұрын
Well done
@tokfooqueen Жыл бұрын
thank you
@v.tunglc Жыл бұрын
clearly explained.
@imadsaddik5 ай бұрын
Thanks
@zakorato9 жыл бұрын
WTH--i mean look how good you are--thanks alot
@multipurpose1530 Жыл бұрын
Last two examples confused me again . Its not an easy task when you are doing confounding, mediation and interaction simultaneously
@sidraashraf47315 жыл бұрын
Thanku mam
@mgmmac3 жыл бұрын
good vid
@bravething20119 жыл бұрын
thank you so much :D
@samon30658 жыл бұрын
I'm 68 and planning on competing in the olympics, I see a positive relationship between age and physical activity.
@kocur4d6 жыл бұрын
Association does not imply causation! This is what my statistic book has written down on every page. How come you are throwing this causes this and that causes this all over the place? :)
@MelbourneMaster4 жыл бұрын
These examples are so cut and clear that your argument is basically invalid. But yes sometimes it can be difficult to deem something an association or causation.
@MelbourneMaster4 жыл бұрын
Your example with age is throwing me off. Usually age is an effect modifier. Is it because you portrayed age as a dichotemous variable i.e young or not young that it works? Age and physical exercise would be a continuum spectrum where physical activity would drop gradually as age increases, therefore this is a bad example since there is no singular point where you suddenly shift from being young to not being young anymore. Age is almost always an effect modifier in my opinion, as effect modifiers are usually biologically rooted.