Thanks Greg. This made me realise how non-standard my code is. I learnt: - Use copy or deepcopy and not assignment. - Always perform preprocessing on the train and test separately. - sklearn pipelines have nothing to do with ETL pipelines from Data Engineering. - sklearn transfers have nothing to do with NLP Transformers. - sk elarn estimators have nothing to do with Statistics estimators.
@GregHogg Жыл бұрын
Super glad you got some useful pointers!!
@crepantherx3 жыл бұрын
Keep Posting Greg, I am Data Analyst by profession and your video certainly helps a lot
@GregHogg3 жыл бұрын
That's awesome! Thank you 😄
@hansenmarc2 жыл бұрын
Great stuff! I’m curious why you used FunctionTransformer instead of ColumnTransformer, which could run the two scalers in parallel? Also, since FunctionTransformer is stateless, the documentation says that fit just checks the input rather than actually fitting the scaling parameters. Doesn’t that lead to data leakage since applying transform to test data won’t use parameters learned from fitting on the training data?
@kyleGrealis5 ай бұрын
thanks, Greg. really good explanation and structured example. this makes it easy to create a template for easy reuse!
@brandonn8166 Жыл бұрын
Just out of curiosity, is there a reason you don't use train_test_split to get X and y values?
@NikitaShilyaev Жыл бұрын
yes, why he uses X_train for train_predictions instead of another dataset X_valid
@AmitabhSuman2 жыл бұрын
A very practical video, that I came across on Pipelines. Thank you for this video!
@GregHogg2 жыл бұрын
Awesome that's great to hear. You're very welcome ☺️☺️
@ilanyutsis96535 ай бұрын
When you do the StandardScaler().fit on the dataframe, what is the meaning of this operation? what is happening?
@alexrook5604 Жыл бұрын
I undstand what you are doing here but I have two questions that I think would be helpful and would make it easier to follow along and replicate you steps. 1) Where did you get the data. I can't the california_housing dataset that is already in the train/test form. 2) Why not use scikit-learn tooling rather than doing it yourself? Like you could have used train/test split or pipelines (or column transformer... or similar stuff). That just has me confused.
@JJGhostHunters2 жыл бұрын
Great tutorial! I use the MinMaxScaler with the option to scale from -1 to 1 instead of 0 to 1 when I am dealing with values that can be positive and negative. Seems to be fine, but I may need to reconsider going forward. I have never noticed any issues though.
@rahiiqbal1294 Жыл бұрын
This was very helpful, thank you :)
@JJGhostHunters2 жыл бұрын
I would love to see a tutorial that covers using pipelines with multilayer perceptron models (MLPs), CNNs and LSTMS.
@lythien3902 жыл бұрын
Thank you Greg! It's a great video!
@GregHogg2 жыл бұрын
Glad to hear it!
@TheFrankyguitar Жыл бұрын
Thanks for this amazing video! Would that work also with a statsmodels model?
@GregHogg Жыл бұрын
Thanks so much!! And I'm not sure, haven't tried :)
@junaidlatif28812 жыл бұрын
How to transform y variable and then fit model. And after how to reverse transform for the scatter plotting
@marcofogale971911 ай бұрын
Perfect explanation. Thanks a lot
@GregHogg11 ай бұрын
Very welcome 😁
@talyb73832 жыл бұрын
Thanks for the great tutorial! what do I need to change to create a pipeline for an image classification model? like the cifar10 model?
@GregHogg2 жыл бұрын
Well, everything. You probably won't be using scikit for that. And you're very welcome!
@talyb73832 жыл бұрын
@@GregHogg I didnt explained myself clearly... I want to create a pipeline that receives a trained cifar10 model an also make preprocessing on the e data set ? so I cant use your way?
@Nadia-db6nb2 жыл бұрын
Thanks for the great tutorial. Can you make a video on how to combine multiple feature selection methods and feature extraction using python?
@fabio336ful2 жыл бұрын
Did you say pipelines doesn't function for classifications problems? Min: 1:07
@GregHogg2 жыл бұрын
Does, not doesn't
@fabio336ful2 жыл бұрын
@@GregHogg thanks 🙏🏼
@adriandiazNY Жыл бұрын
Great Video!
@GregHogg Жыл бұрын
Thank you Adrian!
@krzysztofzaucha35929 ай бұрын
nice video Greg
@GregHogg9 ай бұрын
Thanks so much!!
@nabanitadasgupta Жыл бұрын
Thank you for the video!
@00SeijiHan00 Жыл бұрын
TYSM bro really appreciate this
@GregHogg Жыл бұрын
Very welcome!!
@tareq81093 жыл бұрын
Bro can you show how to make youtube and any video downloader make by python
@juampaaa902 жыл бұрын
awesome ty
@allanmachado20119 ай бұрын
Thank you!
@Supernyv Жыл бұрын
Awesome !
@GregHogg Жыл бұрын
Thank you!
@m18293 Жыл бұрын
Can you share this notebook?
@GregHogg Жыл бұрын
dang i think i lost it, sorry
@AceOnBase1 Жыл бұрын
Bro you literally just copied this out of a textbook lmao but I respect the grind.
@MrAhsan993 жыл бұрын
you are ❤
@GregHogg3 жыл бұрын
❤️
@johnspivack Жыл бұрын
Too confusing. Too many tangents, doesn't cover the main idea clearly. Downvoted.
@GregHogg Жыл бұрын
Well I upvoted it to counter you
@n8trh3 ай бұрын
What tangents? This video was not only to the point from the start, but it also went into depth with useful examples. If you thought those were tangents, I recommend watching again, maybe with more care this time.