thanks for your short, useful introduction! it helped me a lot
@DrDataScience3 жыл бұрын
Thanks for the comment.
@adiver_ Жыл бұрын
hello As you have imported polynomial features and transformed the independent variable(X_train) for it be fitted in a polynomial regression then why did you put linearregression() as the estimator in the last tuple of the list?? shouldn't you have use polyfit function or something else? NOTE: I am a beginner here , so the doubts can be silly.
@DrDataScience Жыл бұрын
Good question! We have already created all the polynomial terms that we need, i.e., x, x^2, x^3, etc. Thus, we can now view this as a linear regression problem with respect to the "new/artificial" features.
@adiver_ Жыл бұрын
I appreciate your reply , it cleared exactly what i was asking. Thanks @@DrDataScience
@adiver_ Жыл бұрын
@@DrDataScience one more thing I need to ask if you can spare some time, I have seen people do parameter scaling using StandardScaler() before polynomial features and estimator in a Pipeline argument, so is the scaling a necessary step or we can skip it??
@muhammadjamalahmed86643 жыл бұрын
Love your tutorials..
@DrDataScience3 жыл бұрын
Thanks!
@maxwellpatten9227 Жыл бұрын
This is excellent. Thank you
@DrDataScience Жыл бұрын
Thanks!
@Hajar1992ful2 жыл бұрын
Thank you for this useful video!
@sebacortes88122 жыл бұрын
muchas gracias saludos desde chile!!
@DrDataScience2 жыл бұрын
Gracias!
@rishidixit79398 ай бұрын
Why are all arrays converted to column matrices while applying sklearn
@DrDataScience8 ай бұрын
Because each column corresponds to a feature or attribute of your data set. Thus, the number of elements in that column vector is equal to the number of samples.
@aszx-tv4pq7 ай бұрын
HI there, very happy with this channel could you explain a bit simpler what is pipeline part!
@nachoeigu2 жыл бұрын
I have a big one question: What is the difference of build a Machine Learning application with Pipeline and to build a machine learning application with a OOP technique? I see that it is the same.
@DrDataScience2 жыл бұрын
Everything in Python is defined as a class so we use OOP all the time. Pipeline provides a nice flexible way to combine multiple transformers and an estimator.