Understanding Pipeline in Machine Learning with Scikit-learn (sklearn pipeline)

  Рет қаралды 44,901

Dr. Data Science

Dr. Data Science

Күн бұрын

Пікірлер: 26
@AnkitGupta005
@AnkitGupta005 2 жыл бұрын
Short and crisp. Thank you!
@fabianaltendorfer11
@fabianaltendorfer11 2 жыл бұрын
that's a great introduction to pipelines! Thanks
@DrDataScience
@DrDataScience 2 жыл бұрын
Thank you!
@kianaliaghat7740
@kianaliaghat7740 3 жыл бұрын
thanks for your short, useful introduction! it helped me a lot
@DrDataScience
@DrDataScience 3 жыл бұрын
Thanks for the comment.
@adiver_
@adiver_ Жыл бұрын
hello As you have imported polynomial features and transformed the independent variable(X_train) for it be fitted in a polynomial regression then why did you put linearregression() as the estimator in the last tuple of the list?? shouldn't you have use polyfit function or something else? NOTE: I am a beginner here , so the doubts can be silly.
@DrDataScience
@DrDataScience Жыл бұрын
Good question! We have already created all the polynomial terms that we need, i.e., x, x^2, x^3, etc. Thus, we can now view this as a linear regression problem with respect to the "new/artificial" features.
@adiver_
@adiver_ Жыл бұрын
I appreciate your reply , it cleared exactly what i was asking. Thanks @@DrDataScience
@adiver_
@adiver_ Жыл бұрын
@@DrDataScience one more thing I need to ask if you can spare some time, I have seen people do parameter scaling using StandardScaler() before polynomial features and estimator in a Pipeline argument, so is the scaling a necessary step or we can skip it??
@muhammadjamalahmed8664
@muhammadjamalahmed8664 3 жыл бұрын
Love your tutorials..
@DrDataScience
@DrDataScience 3 жыл бұрын
Thanks!
@maxwellpatten9227
@maxwellpatten9227 Жыл бұрын
This is excellent. Thank you
@DrDataScience
@DrDataScience Жыл бұрын
Thanks!
@Hajar1992ful
@Hajar1992ful 2 жыл бұрын
Thank you for this useful video!
@sebacortes8812
@sebacortes8812 2 жыл бұрын
muchas gracias saludos desde chile!!
@DrDataScience
@DrDataScience 2 жыл бұрын
Gracias!
@rishidixit7939
@rishidixit7939 8 ай бұрын
Why are all arrays converted to column matrices while applying sklearn
@DrDataScience
@DrDataScience 8 ай бұрын
Because each column corresponds to a feature or attribute of your data set. Thus, the number of elements in that column vector is equal to the number of samples.
@aszx-tv4pq
@aszx-tv4pq 7 ай бұрын
HI there, very happy with this channel could you explain a bit simpler what is pipeline part!
@nachoeigu
@nachoeigu 2 жыл бұрын
I have a big one question: What is the difference of build a Machine Learning application with Pipeline and to build a machine learning application with a OOP technique? I see that it is the same.
@DrDataScience
@DrDataScience 2 жыл бұрын
Everything in Python is defined as a class so we use OOP all the time. Pipeline provides a nice flexible way to combine multiple transformers and an estimator.
@gabrielmarchioli4669
@gabrielmarchioli4669 2 жыл бұрын
Great video. Helped me a lot
@hiba8484
@hiba8484 Жыл бұрын
Thanks, its really helpfull
@DrDataScience
@DrDataScience Жыл бұрын
Thanks for watching this video!
@burakakay6632
@burakakay6632 2 жыл бұрын
Thank you :=}
@DrDataScience
@DrDataScience 2 жыл бұрын
You are welcome!
How do I encode categorical features using scikit-learn?
27:59
Data School
Рет қаралды 140 М.
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Scikit-Learn Model Pipeline Tutorial
16:50
Greg Hogg
Рет қаралды 28 М.
What is Data Pipeline? | Why Is It So Popular?
5:25
ByteByteGo
Рет қаралды 239 М.
Simplify Data Preprocessing with Python's Column Transformer: A Step-by-Step Guide
13:52
All Machine Learning algorithms explained in 17 min
16:30
Infinite Codes
Рет қаралды 530 М.
ML Was Hard Until I Learned These 5 Secrets!
13:11
Boris Meinardus
Рет қаралды 358 М.
Professional Preprocessing with Pipelines in Python
21:48
NeuralNine
Рет қаралды 67 М.
Empirical Risk Minimization and General Machine Learning Workflow
25:27
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН