Sequences from Group Theory

  Рет қаралды 2,914

TheGrayCuber

TheGrayCuber

Күн бұрын

Пікірлер: 20
@yatyayat
@yatyayat 18 күн бұрын
10:43 You made a mistake here: 9 × 13 = 117 ≠ 121.
@TheGrayCuber
@TheGrayCuber 18 күн бұрын
Agh I sure did, thank you for noting this
@yatyayat
@yatyayat 18 күн бұрын
@TheGrayCuber Thanks. 🙂
@elendiastarman
@elendiastarman 16 күн бұрын
Congrats on contributing these sequences to the OEIS! That's a great accomplishment.
@yfidalv
@yfidalv 17 күн бұрын
This and the previous were two of the most interesting/novel group theory videos i’ve seen, thanks for sharing your findings :)
@d1scocubes
@d1scocubes 19 күн бұрын
your voice is so calming
@djsmeguk
@djsmeguk 18 күн бұрын
Lovely stuff. The patterns are fascinating. Glad you got them up onto oeis!
@1.4142
@1.4142 19 күн бұрын
31^(1/3)=3.14138065 nice
@RuleAndLine
@RuleAndLine 19 күн бұрын
This is incredible
@ShenghuiYang
@ShenghuiYang 19 күн бұрын
Clean and concise!
@mostly_mental
@mostly_mental 17 күн бұрын
These are some really interesting patterns you've found. Your approach to the maximal representations (and the variance) looks a lot like the 0-1 knapsack problem, which is a very well explored topic. Have you looked at applying any of those approaches here?
@TheGrayCuber
@TheGrayCuber 16 күн бұрын
I hadn't heard of the knapsack problem, thanks for pointing me that way! I'm working now to optimize the logic for this sequence, with the hopes of finding a million or so terms. It looks like the knapsack approach applies and is similar to what I've been building, but this list of factors is a little nicer than the general knapsack setup, particularly because for n>1, the 'cheapest' factor with weight n is cheaper than that of n+. I may make a follow-up video on this optimized logic
@TheGrayCuber
@TheGrayCuber 13 күн бұрын
I've been working more on this, and found a good algorithm to find terms of my sequence. This is essentially the 0-1 Knapsack problem, but with infinite items. Are you aware of any materials on this? I've found a lot of resources about the 0-1 knapsack with some N amount of items to pick from, but I can't find any discussion on an unlimited number of items. The 'unbounded' version of the problem allows for many copies of the same item but still uses finite items
@mostly_mental
@mostly_mental 9 күн бұрын
@@TheGrayCuber If you can efficiently find an upper bound for factors with a given number of cycles (or precompute the cycles and costs for a sufficiently large list of primes), you can treat it as the finite problem. Otherwise, I don't think you're going to have much luck with this approach.
@TriangularCosmos
@TriangularCosmos 19 күн бұрын
Cool!
@marigold2257
@marigold2257 18 күн бұрын
Here’s a fun sequence, 1,2,3,1,5,6,7,2,3,10,11,3,13,14,15,1,17,6,19,5,21,22,23,6,5,26,1,7,29,30,31,2,33,34,35,3,37,38,39,10,41,42,43,11,15,46,47,3,49,10. Can you find the pattern
@TheGrayCuber
@TheGrayCuber 18 күн бұрын
It seems like for any prime power p^k that divides n, if p divides k then remove the p factor, else use just p. The only exception I can see is 49 which would go to 7 under my rule.
@marigold2257
@marigold2257 18 күн бұрын
@@TheGrayCuber this is completely correct and I made a mistake on 49😅
@TheGrayCuber
@TheGrayCuber 18 күн бұрын
Cool, thanks for the puzzle!!
@Kyoz
@Kyoz 18 күн бұрын
🤍
Gaussian Primes Visually
12:29
TheGrayCuber
Рет қаралды 49 М.
Graphing the Groups of Units
23:39
TheGrayCuber
Рет қаралды 9 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Using Recursive Sequences to Save Christmas
12:46
YATAQi
Рет қаралды 14 М.
Every Proof that 0.999 equals 1 but they get increasingly more complex
17:42
In Defense of the Imperial System: A Countryball Courtroom Showdown
18:36
Group theory, abstraction, and the 196,883-dimensional monster
21:58
3Blue1Brown
Рет қаралды 3,1 МЛН
Retro MS-DOS Coding - Recreating the Iconic Award BIOS Screen
18:16
NCOT Technology
Рет қаралды 92 М.
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 1,5 МЛН
one year of studying (it was a mistake)
12:51
Jeffrey Codes
Рет қаралды 147 М.
Crazy Facts About the Number 2025
8:37
Combo Class
Рет қаралды 51 М.
The BEST Mechanical Display You've EVER Seen!!!
13:51
Tin Foil Hat
Рет қаралды 521 М.
Modular Multiplication is just Modular Addition
17:27
TheGrayCuber
Рет қаралды 12 М.
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19