I got so hyped when I saw u getting into the backflip position at 4:00!!
@goodplacetostop29734 жыл бұрын
69 likes, STOP THE COUNT!
@Xenon7170 Жыл бұрын
100 people ruined it.
@mathematics_and_energetics8 күн бұрын
Yes, Michael's backflips are AMAZING. I look forward all the time to seeing him doing backflips! 🌺
@aarryasaraf4 жыл бұрын
The back flip! It's back!!!!!!!!!!
@nicolocantaluppi55724 жыл бұрын
It caught me off guard!
@goodplacetostop29734 жыл бұрын
4:04 YO, THE BACKFLIP IS BACK!!! 8:32
@ZeonLP4 жыл бұрын
im waiting for the double backflip
@captainsnake85154 жыл бұрын
YES
@aril_archive65184 жыл бұрын
Instantly push like button
@ruanramon14 жыл бұрын
Penn's BACKFLIP is actually the BESTFLIP
@tonyhaddad13944 жыл бұрын
Can any one do a double backflip (Its possible phisicaly ??)
@rohitraut59254 жыл бұрын
just completed fist solution: instead more easily: cosine squared x - sine squared x = cos2x whose integration is: sin2x/2
@poissonsumac79224 жыл бұрын
Beat me to it! That's way more simple imo, tho what he did was neat too
@Tiqerboy4 жыл бұрын
Exactly how I did it.
@changjeffreysinto38724 жыл бұрын
beat me to it +1
@Kanbei114 жыл бұрын
To be fair he did say you could use a double angle identity to solve
@cyberpunk_edgerunners4 жыл бұрын
the same i thought
@aviralsood81414 жыл бұрын
4:04 BACKFLIP CUTS ARE BACK!
@manucitomx4 жыл бұрын
Oh, oh, oh, what a nice early Xmas present at 4:05. Thank you professor.
@adityamohan73664 жыл бұрын
I learned today that cos of double angle can also be written as a difference of fourth powers of cos and sin of single angle..just as it can be of difference of squares of both which is by definition.
@arduous2224 жыл бұрын
Another way to evaluate first integral is to use (cos^2 x - sin^2 x)=(cos x - sin x)(cos x + sin x). If we let u=(cos x+sin x), then du/dx = (cos x - sin x). So, (up to constant), int (cos^2 x - sin^2 x) dx = int u du = (1/2) u^2 = (1/2)(1+2 sin x cos x)= sin x cos x +1/2.
@holyshit92220 күн бұрын
0:06 Difference of two squares , and double angle for cosine 4:18 By parts it may be necessary to do it twice
@mathematics_and_energetics8 күн бұрын
Since I love calculating in C, I solved the integral over cosx*coshx in C with cosh(x) = cos(ix) and sin(ix) = -i*sinh(x). It took me a little bit longer, but I didn't need to integrate by parts... Of course, Michael's ways to solve the intgrals are the best ones... 🌺
@ntvonline94804 жыл бұрын
Got my “OK. Great” shirt and “Do Hard Math” sticker. Will be inspirational for grad school. Thanks!
@rickshaw16414 жыл бұрын
Your backflip is so amazing, so great, so powerful!
@rhettolsontime88354 жыл бұрын
You could have also set cos^2x-sin^2x equal to cos2x, by the double angle theorem.
@kennethandrew88784 жыл бұрын
He explicitly says he didn't want to do it that way, but yes you could
@mathunt11304 жыл бұрын
There are two ways you can deal with the second integral. You can note cosh x=(e^x+e^-x)/2, and then use integration by parts on e^\pm x\cos x, or that cos x =(e^ix+e^-ix)/2 and then use complex integration. It's simple either way.
@_GOUTHAM4 жыл бұрын
This shows besides maths class you soon create gymnastics channel too😁
@tomkerruish29824 жыл бұрын
Two other ways for the second integral: 1. Guess it's a linear combination of cos x sinh x and sin x cosh x and figure out the coefficients. 2. Recall that cosh x = cos ix and use cos x cosh x = ½(cos(x + ix) + cos(x - ix)).
@giacomocervelli1945 Жыл бұрын
you could also see that the integral was just the real part of integral(coshx*exp(ix)dx). Then expand the coshx as 1/2[exp(x)-exp(-x)]
@ruanramon14 жыл бұрын
4:04 THE EPICNESS
@abhimanyu888724 жыл бұрын
Sir you are really a genius.🛡️‼️
@mihaipuiu62314 жыл бұрын
Very smart solution. Good for you Penn!
@dodokgp4 жыл бұрын
why go through all the splitting and integration by parts when you can simply replace cos^2(x)-sin^2(x) by cos(2x) ?
@RieMUisthegoaT4 жыл бұрын
i think the point of this video is to show the technique of canceling two integrals. pretty cool if you ask me
@tomatrix75254 жыл бұрын
That would have been easier. I think the purpose of his approach was for demonstration purposes. Nobody would bother to watch cos2x being integrated it is too basic
@ghanshamchandel18544 жыл бұрын
because it cannot be applied to cos(x)cosh(x)dx. He was building up for that integral.
@tonyhaddad13944 жыл бұрын
Back flip is incredible good job in math and in sport 💓💓
@kumailabdulaziz40964 жыл бұрын
One of the best mathematics channels; Go ahead !!
@beneustace37094 жыл бұрын
I liked just for the backflip!
@andreivila76074 жыл бұрын
Hello Mr. Penn. Instead of separating integral of cos^2(x) - sin^2(x) in two integrals, couldn’t you just say that cos^2(x) - sin^2(x) = cos(2x) and integrate from there?
@eugenekim30124 жыл бұрын
He mentioned double angle formula, he's doing this just for the fun of overkilling.
@andreivila76074 жыл бұрын
@@eugenekim3012 Sorry, I didn’t watch carefully. I just speed ran through the integral 😅
@ghanshamchandel18544 жыл бұрын
@@eugenekim3012 he was also building up the technique for the later example.
@PubicGore2 жыл бұрын
Dr. Penn*
@ArjunBhanap4 жыл бұрын
Another method for the cos(x)cosh(x) integral is by integrating the function cos[x(1+i)] and taking the real part of the answer, using Euler's formula to express cos(ix) and sin(ix) in terms of real and complex hyperbolic functions with real arguments
@skwbusaidi4 жыл бұрын
The second question can be done using integration by part twice or DI method D I + cosx coshx - -sinx sinhx + - cosx coshx Integeral of cosx coshx = cosx sinhx +sinx coshx - integeral of cos x coshx So integeral of cosx coshx = 1/2 (cosx sinhx +sinx coshx ) + c
@MichaelPennMath4 жыл бұрын
I like to think of my solution as a sort of "final draft" of either of those methods.
@polychromaa3 жыл бұрын
The first one is pretty simple. I was able to do it in my head
@JM-us3fr4 жыл бұрын
I just got finished watching the 2006 MIT integration bee a couple days ago. I gotta say (as a master's student) it's nice to see I was able to keep up with those undergrad math majors.
@danielmirandacastro71614 жыл бұрын
Imo this actually looks so much better than using double angle formulas os writing stuff as exponentials
@josephmartos4 жыл бұрын
You are a 10/10 man! Congrats!!
@justacutepotato29454 жыл бұрын
I prefer to use the exponential expression for cosh. That makes the integral extremely easy.
@ShivKumar-im3pm4 жыл бұрын
But that would be boring
@michaelgolub20194 жыл бұрын
The difference of squares in the first example may be expressed as a cosine of a double argument, then no integration by parts is required; as to the second example, we can express both trigonometric and hyperbolic function via exponential function and integrate easily in complex domain, then recombine as trigonometric and hyperbolic functions. The latter may be not so fast, but straightforward.
@liyi-hua21114 жыл бұрын
i like the way he did at second part. It's like doing a problem in a knee observation instead of doing the problem like a software, and also a bit inspiring. (But not the first part)
@SKARTHIKSELVAN4 жыл бұрын
Thanks for teaching us. I like your flip also.
@joeg5794 жыл бұрын
HELL YEA BROTHER THE FLIPS ARE BACK 🤘🤘🤘 nice integrals by the way
@particleonazock22464 жыл бұрын
I would like to express my gratitude toward the honoured and venerable mathematics professor, Michael Penn, for his remarkable video on integration skills.
@MaromonLup4 жыл бұрын
Thank you for helping me recall my first year of Uni again
@jamincywong21594 жыл бұрын
For the first question, just use cos^2 x - sin^2 x = cos(2x) That would be much faster
@hamzahamdain91624 жыл бұрын
Thank you for the new technique 😎
@profamitgupta4 жыл бұрын
The backflip was awesome
@sarthakanand45154 жыл бұрын
Now whenever I will be solving a paper, as I go from sum to sum, in my head, you, sir, would be backflipping.
@simaomoreira204 жыл бұрын
4:04 dammmmmmmmmmmmmmmmmmmmmmmmmmm
@abrahammekonnen2 жыл бұрын
The idea of taking the function, adding another copy and multiplying by 1/2 is an interesting idea. I wonder how it was motivated.
@CM63_France4 жыл бұрын
Hi, For fun: 1 "ok, great", 1 "let's may be go ahead and", 4:13 : perilous jump, it's been a long time.
@replicaacliper4 жыл бұрын
Can you just replace cos and cosh with their exponential representations
@MrRyanroberson14 жыл бұрын
i'll just add something very subtle you pointed out: cos^4 - sin^4 = cos^2 - sin^2. very strange identities pop out of that. now if only cos^4 + sin^4 had a solution...
@hi-bw6yv4 жыл бұрын
Didn't realize you could do a flip so hard that you break space and time.
@lazaroychasoperez88824 жыл бұрын
I think than the first integral will be easier if you had use cos^2(x)-sin^2(x)=cos(2x)
@tomkerruish29824 жыл бұрын
Yes, you can do a backflip, but can you snap the bad guy's neck when you do it? It'd actually be super easy, barely an inconvenience.
@mohammedsalouani76724 жыл бұрын
Yeeeaaah the back flip
@flux41624 жыл бұрын
BACK FLIP IS BACK!!!!!!
@theimmux30344 жыл бұрын
My guess is that you just integrate by parts till you have the integral we started with, add on both sides and divide by two.
@abdallahmohamedelhady66684 жыл бұрын
Thank you so so much
@mahmoudalbahar16414 жыл бұрын
Many thanks for this good video
@MGoebel-c8e4 ай бұрын
Did anyone try to substitute x for (-x)? The integral then equals its negative which would mean it’s zero (in a way cos(x)*sin(x) is a result “similar” to zero). I do not see how this is not valid. I also don’t see how this is less fascinating than people doing random acrobatics.
@rain20014 жыл бұрын
what is that thing falling behind him at 4:46?
@Te4mRyouko4 жыл бұрын
Looks like dust, maybe from doing that backflip 😅 isn't he filming this in his basement?
@mariannanezhurina73994 жыл бұрын
cos^2x-sin^2x=cos2x so it makes integration a lot easier
@jameskeegan004 жыл бұрын
I was not expecting the flip
@marclinlin27994 жыл бұрын
讚 back flip yes!
@respectmath954 жыл бұрын
Another way to cancel out the integral INT (cosx)^4 - (sinx)^4 dx =INT (cosx)^3 d(sinx) + INT (sinx)^3 d(cosx) =(sinx)(cosx)^3 + INT 3(sinx)^2(cosx)^2 dx + (sinx)^3(cosx) - INT 3(sinx)^2(cosx)^2 dx =sinxcosx + C
@lorentzbear4 жыл бұрын
Black flip 😍😍😍
@berzerksharma4 жыл бұрын
The backflippp🔥🔥
@JSSTyger4 жыл бұрын
How did that backflip erase the board?
@Tiqerboy4 жыл бұрын
You should get on Ninja Warrior as a side gig.
@granaro82364 жыл бұрын
I don't get it. Once you got to cos^2-sin^2, that is cos(2x). the integral was immediate
@MohammedAli-ig2nu4 жыл бұрын
Will you consider the question of how to decide if the anti-derivative can be expressed in elementary functions?
@arvindsrinivasan4244 жыл бұрын
Goddamn.... I wish I had enough motivation to become this athletic
@muckchorris97454 жыл бұрын
THE BACKFLIPS ARE BACK!!!!!!!!!!!!! YEAAAAAAAAAAAAAAAAAAAAAHw
@ruanramon14 жыл бұрын
Here's a Michael Penn's backflip compilation kzbin.info/www/bejne/raGcl3SinbZ9nck
@karolakkolo1234 жыл бұрын
But cos^2(x)-sin^2(x) is just cos(2x)
@DavidCorneth4 жыл бұрын
I added a bunch of links to Michaels videos to the Online Encyclopedia of Integer Sequences (OEIS). See oeis.org/search?q=%22Michael+Penn%22&sort=&language=&go=Search. Some of his video's contain integers sequences, some give a constant which is in OEIS. I got word from Neil Sloane (the founder) saying "the more we have the better!". Can you maybe help by saying which of his video's could be in OEIS to which sequence?
@jounik4 жыл бұрын
And that's a good place to flip.
@royalmate99194 жыл бұрын
Sir, please solve questions which are involving mod
@hassanalihusseini17174 жыл бұрын
Amazing backflip.... but can you next time multiply it by (-1)? :-)
@dkravitz78 Жыл бұрын
Cos^2-sin^2 is sin+cos times sin-cos. Easy u sub from there.
@prabkiratsingh48464 жыл бұрын
It would have been easier with cos 2x identify
@freddysilva19384 жыл бұрын
Amazing. Mind blowing haha
@DrChess84 жыл бұрын
Beautiful maths, thank you!
@nelprincipe4 жыл бұрын
you could use the identity cos2x = cos^2(x) - sin^2(x) to simplify steps on the first example.
@lukaobradovic96294 жыл бұрын
Sharpen your integration skills: buy a calculator
@djvalentedochp4 жыл бұрын
back flips yay
@MelonMediaMedia4 жыл бұрын
For the first one you can use cos^2-(x)sin^2(x)=cos(2x) Edit: and for the 2nd one I think you can use complex definition for cosine, and the e^x thing for the hyperbolic cosine and do some stuff with it
@drsonaligupta754 жыл бұрын
The first one could have been done by cos2x=cos^2x -sin^2x
@anjaneyasharma3224 жыл бұрын
Trigo calculus the way it is being taught is nonsense. Draw the graph for the function. Find out the average value of Y Multiply it by the base in radians. U get the area under the curve Integration finished I have crossed 60 reading such mistakes. The instructor has not yet realized. As for t shirts they are fine so no need of this type of selling.