Sharpen your integration skills!

  Рет қаралды 20,825

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 111
@blackpenredpen
@blackpenredpen 4 жыл бұрын
I got so hyped when I saw u getting into the backflip position at 4:00!!
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
69 likes, STOP THE COUNT!
@Xenon7170
@Xenon7170 Жыл бұрын
100 people ruined it.
@mathematics_and_energetics
@mathematics_and_energetics 8 күн бұрын
Yes, Michael's backflips are AMAZING. I look forward all the time to seeing him doing backflips! 🌺
@aarryasaraf
@aarryasaraf 4 жыл бұрын
The back flip! It's back!!!!!!!!!!
@nicolocantaluppi5572
@nicolocantaluppi5572 4 жыл бұрын
It caught me off guard!
@goodplacetostop2973
@goodplacetostop2973 4 жыл бұрын
4:04 YO, THE BACKFLIP IS BACK!!! 8:32
@ZeonLP
@ZeonLP 4 жыл бұрын
im waiting for the double backflip
@captainsnake8515
@captainsnake8515 4 жыл бұрын
YES
@aril_archive6518
@aril_archive6518 4 жыл бұрын
Instantly push like button
@ruanramon1
@ruanramon1 4 жыл бұрын
Penn's BACKFLIP is actually the BESTFLIP
@tonyhaddad1394
@tonyhaddad1394 4 жыл бұрын
Can any one do a double backflip (Its possible phisicaly ??)
@rohitraut5925
@rohitraut5925 4 жыл бұрын
just completed fist solution: instead more easily: cosine squared x - sine squared x = cos2x whose integration is: sin2x/2
@poissonsumac7922
@poissonsumac7922 4 жыл бұрын
Beat me to it! That's way more simple imo, tho what he did was neat too
@Tiqerboy
@Tiqerboy 4 жыл бұрын
Exactly how I did it.
@changjeffreysinto3872
@changjeffreysinto3872 4 жыл бұрын
beat me to it +1
@Kanbei11
@Kanbei11 4 жыл бұрын
To be fair he did say you could use a double angle identity to solve
@cyberpunk_edgerunners
@cyberpunk_edgerunners 4 жыл бұрын
the same i thought
@aviralsood8141
@aviralsood8141 4 жыл бұрын
4:04 BACKFLIP CUTS ARE BACK!
@manucitomx
@manucitomx 4 жыл бұрын
Oh, oh, oh, what a nice early Xmas present at 4:05. Thank you professor.
@adityamohan7366
@adityamohan7366 4 жыл бұрын
I learned today that cos of double angle can also be written as a difference of fourth powers of cos and sin of single angle..just as it can be of difference of squares of both which is by definition.
@arduous222
@arduous222 4 жыл бұрын
Another way to evaluate first integral is to use (cos^2 x - sin^2 x)=(cos x - sin x)(cos x + sin x). If we let u=(cos x+sin x), then du/dx = (cos x - sin x). So, (up to constant), int (cos^2 x - sin^2 x) dx = int u du = (1/2) u^2 = (1/2)(1+2 sin x cos x)= sin x cos x +1/2.
@holyshit922
@holyshit922 20 күн бұрын
0:06 Difference of two squares , and double angle for cosine 4:18 By parts it may be necessary to do it twice
@mathematics_and_energetics
@mathematics_and_energetics 8 күн бұрын
Since I love calculating in C, I solved the integral over cosx*coshx in C with cosh(x) = cos(ix) and sin(ix) = -i*sinh(x). It took me a little bit longer, but I didn't need to integrate by parts... Of course, Michael's ways to solve the intgrals are the best ones... 🌺
@ntvonline9480
@ntvonline9480 4 жыл бұрын
Got my “OK. Great” shirt and “Do Hard Math” sticker. Will be inspirational for grad school. Thanks!
@rickshaw1641
@rickshaw1641 4 жыл бұрын
Your backflip is so amazing, so great, so powerful!
@rhettolsontime8835
@rhettolsontime8835 4 жыл бұрын
You could have also set cos^2x-sin^2x equal to cos2x, by the double angle theorem.
@kennethandrew8878
@kennethandrew8878 4 жыл бұрын
He explicitly says he didn't want to do it that way, but yes you could
@mathunt1130
@mathunt1130 4 жыл бұрын
There are two ways you can deal with the second integral. You can note cosh x=(e^x+e^-x)/2, and then use integration by parts on e^\pm x\cos x, or that cos x =(e^ix+e^-ix)/2 and then use complex integration. It's simple either way.
@_GOUTHAM
@_GOUTHAM 4 жыл бұрын
This shows besides maths class you soon create gymnastics channel too😁
@tomkerruish2982
@tomkerruish2982 4 жыл бұрын
Two other ways for the second integral: 1. Guess it's a linear combination of cos x sinh x and sin x cosh x and figure out the coefficients. 2. Recall that cosh x = cos ix and use cos x cosh x = ½(cos(x + ix) + cos(x - ix)).
@giacomocervelli1945
@giacomocervelli1945 Жыл бұрын
you could also see that the integral was just the real part of integral(coshx*exp(ix)dx). Then expand the coshx as 1/2[exp(x)-exp(-x)]
@ruanramon1
@ruanramon1 4 жыл бұрын
4:04 THE EPICNESS
@abhimanyu88872
@abhimanyu88872 4 жыл бұрын
Sir you are really a genius.🛡️‼️
@mihaipuiu6231
@mihaipuiu6231 4 жыл бұрын
Very smart solution. Good for you Penn!
@dodokgp
@dodokgp 4 жыл бұрын
why go through all the splitting and integration by parts when you can simply replace cos^2(x)-sin^2(x) by cos(2x) ?
@RieMUisthegoaT
@RieMUisthegoaT 4 жыл бұрын
i think the point of this video is to show the technique of canceling two integrals. pretty cool if you ask me
@tomatrix7525
@tomatrix7525 4 жыл бұрын
That would have been easier. I think the purpose of his approach was for demonstration purposes. Nobody would bother to watch cos2x being integrated it is too basic
@ghanshamchandel1854
@ghanshamchandel1854 4 жыл бұрын
because it cannot be applied to cos(x)cosh(x)dx. He was building up for that integral.
@tonyhaddad1394
@tonyhaddad1394 4 жыл бұрын
Back flip is incredible good job in math and in sport 💓💓
@kumailabdulaziz4096
@kumailabdulaziz4096 4 жыл бұрын
One of the best mathematics channels; Go ahead !!
@beneustace3709
@beneustace3709 4 жыл бұрын
I liked just for the backflip!
@andreivila7607
@andreivila7607 4 жыл бұрын
Hello Mr. Penn. Instead of separating integral of cos^2(x) - sin^2(x) in two integrals, couldn’t you just say that cos^2(x) - sin^2(x) = cos(2x) and integrate from there?
@eugenekim3012
@eugenekim3012 4 жыл бұрын
He mentioned double angle formula, he's doing this just for the fun of overkilling.
@andreivila7607
@andreivila7607 4 жыл бұрын
@@eugenekim3012 Sorry, I didn’t watch carefully. I just speed ran through the integral 😅
@ghanshamchandel1854
@ghanshamchandel1854 4 жыл бұрын
@@eugenekim3012 he was also building up the technique for the later example.
@PubicGore
@PubicGore 2 жыл бұрын
Dr. Penn*
@ArjunBhanap
@ArjunBhanap 4 жыл бұрын
Another method for the cos(x)cosh(x) integral is by integrating the function cos[x(1+i)] and taking the real part of the answer, using Euler's formula to express cos(ix) and sin(ix) in terms of real and complex hyperbolic functions with real arguments
@skwbusaidi
@skwbusaidi 4 жыл бұрын
The second question can be done using integration by part twice or DI method D I + cosx coshx - -sinx sinhx + - cosx coshx Integeral of cosx coshx = cosx sinhx +sinx coshx - integeral of cos x coshx So integeral of cosx coshx = 1/2 (cosx sinhx +sinx coshx ) + c
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
I like to think of my solution as a sort of "final draft" of either of those methods.
@polychromaa
@polychromaa 3 жыл бұрын
The first one is pretty simple. I was able to do it in my head
@JM-us3fr
@JM-us3fr 4 жыл бұрын
I just got finished watching the 2006 MIT integration bee a couple days ago. I gotta say (as a master's student) it's nice to see I was able to keep up with those undergrad math majors.
@danielmirandacastro7161
@danielmirandacastro7161 4 жыл бұрын
Imo this actually looks so much better than using double angle formulas os writing stuff as exponentials
@josephmartos
@josephmartos 4 жыл бұрын
You are a 10/10 man! Congrats!!
@justacutepotato2945
@justacutepotato2945 4 жыл бұрын
I prefer to use the exponential expression for cosh. That makes the integral extremely easy.
@ShivKumar-im3pm
@ShivKumar-im3pm 4 жыл бұрын
But that would be boring
@michaelgolub2019
@michaelgolub2019 4 жыл бұрын
The difference of squares in the first example may be expressed as a cosine of a double argument, then no integration by parts is required; as to the second example, we can express both trigonometric and hyperbolic function via exponential function and integrate easily in complex domain, then recombine as trigonometric and hyperbolic functions. The latter may be not so fast, but straightforward.
@liyi-hua2111
@liyi-hua2111 4 жыл бұрын
i like the way he did at second part. It's like doing a problem in a knee observation instead of doing the problem like a software, and also a bit inspiring. (But not the first part)
@SKARTHIKSELVAN
@SKARTHIKSELVAN 4 жыл бұрын
Thanks for teaching us. I like your flip also.
@joeg579
@joeg579 4 жыл бұрын
HELL YEA BROTHER THE FLIPS ARE BACK 🤘🤘🤘 nice integrals by the way
@particleonazock2246
@particleonazock2246 4 жыл бұрын
I would like to express my gratitude toward the honoured and venerable mathematics professor, Michael Penn, for his remarkable video on integration skills.
@MaromonLup
@MaromonLup 4 жыл бұрын
Thank you for helping me recall my first year of Uni again
@jamincywong2159
@jamincywong2159 4 жыл бұрын
For the first question, just use cos^2 x - sin^2 x = cos(2x) That would be much faster
@hamzahamdain9162
@hamzahamdain9162 4 жыл бұрын
Thank you for the new technique 😎
@profamitgupta
@profamitgupta 4 жыл бұрын
The backflip was awesome
@sarthakanand4515
@sarthakanand4515 4 жыл бұрын
Now whenever I will be solving a paper, as I go from sum to sum, in my head, you, sir, would be backflipping.
@simaomoreira20
@simaomoreira20 4 жыл бұрын
4:04 dammmmmmmmmmmmmmmmmmmmmmmmmmm
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
The idea of taking the function, adding another copy and multiplying by 1/2 is an interesting idea. I wonder how it was motivated.
@CM63_France
@CM63_France 4 жыл бұрын
Hi, For fun: 1 "ok, great", 1 "let's may be go ahead and", 4:13 : perilous jump, it's been a long time.
@replicaacliper
@replicaacliper 4 жыл бұрын
Can you just replace cos and cosh with their exponential representations
@MrRyanroberson1
@MrRyanroberson1 4 жыл бұрын
i'll just add something very subtle you pointed out: cos^4 - sin^4 = cos^2 - sin^2. very strange identities pop out of that. now if only cos^4 + sin^4 had a solution...
@hi-bw6yv
@hi-bw6yv 4 жыл бұрын
Didn't realize you could do a flip so hard that you break space and time.
@lazaroychasoperez8882
@lazaroychasoperez8882 4 жыл бұрын
I think than the first integral will be easier if you had use cos^2(x)-sin^2(x)=cos(2x)
@tomkerruish2982
@tomkerruish2982 4 жыл бұрын
Yes, you can do a backflip, but can you snap the bad guy's neck when you do it? It'd actually be super easy, barely an inconvenience.
@mohammedsalouani7672
@mohammedsalouani7672 4 жыл бұрын
Yeeeaaah the back flip
@flux4162
@flux4162 4 жыл бұрын
BACK FLIP IS BACK!!!!!!
@theimmux3034
@theimmux3034 4 жыл бұрын
My guess is that you just integrate by parts till you have the integral we started with, add on both sides and divide by two.
@abdallahmohamedelhady6668
@abdallahmohamedelhady6668 4 жыл бұрын
Thank you so so much
@mahmoudalbahar1641
@mahmoudalbahar1641 4 жыл бұрын
Many thanks for this good video
@MGoebel-c8e
@MGoebel-c8e 4 ай бұрын
Did anyone try to substitute x for (-x)? The integral then equals its negative which would mean it’s zero (in a way cos(x)*sin(x) is a result “similar” to zero). I do not see how this is not valid. I also don’t see how this is less fascinating than people doing random acrobatics.
@rain2001
@rain2001 4 жыл бұрын
what is that thing falling behind him at 4:46?
@Te4mRyouko
@Te4mRyouko 4 жыл бұрын
Looks like dust, maybe from doing that backflip 😅 isn't he filming this in his basement?
@mariannanezhurina7399
@mariannanezhurina7399 4 жыл бұрын
cos^2x-sin^2x=cos2x so it makes integration a lot easier
@jameskeegan00
@jameskeegan00 4 жыл бұрын
I was not expecting the flip
@marclinlin2799
@marclinlin2799 4 жыл бұрын
讚 back flip yes!
@respectmath95
@respectmath95 4 жыл бұрын
Another way to cancel out the integral INT (cosx)^4 - (sinx)^4 dx =INT (cosx)^3 d(sinx) + INT (sinx)^3 d(cosx) =(sinx)(cosx)^3 + INT 3(sinx)^2(cosx)^2 dx + (sinx)^3(cosx) - INT 3(sinx)^2(cosx)^2 dx =sinxcosx + C
@lorentzbear
@lorentzbear 4 жыл бұрын
Black flip 😍😍😍
@berzerksharma
@berzerksharma 4 жыл бұрын
The backflippp🔥🔥
@JSSTyger
@JSSTyger 4 жыл бұрын
How did that backflip erase the board?
@Tiqerboy
@Tiqerboy 4 жыл бұрын
You should get on Ninja Warrior as a side gig.
@granaro8236
@granaro8236 4 жыл бұрын
I don't get it. Once you got to cos^2-sin^2, that is cos(2x). the integral was immediate
@MohammedAli-ig2nu
@MohammedAli-ig2nu 4 жыл бұрын
Will you consider the question of how to decide if the anti-derivative can be expressed in elementary functions?
@arvindsrinivasan424
@arvindsrinivasan424 4 жыл бұрын
Goddamn.... I wish I had enough motivation to become this athletic
@muckchorris9745
@muckchorris9745 4 жыл бұрын
THE BACKFLIPS ARE BACK!!!!!!!!!!!!! YEAAAAAAAAAAAAAAAAAAAAAHw
@ruanramon1
@ruanramon1 4 жыл бұрын
Here's a Michael Penn's backflip compilation kzbin.info/www/bejne/raGcl3SinbZ9nck
@karolakkolo123
@karolakkolo123 4 жыл бұрын
But cos^2(x)-sin^2(x) is just cos(2x)
@DavidCorneth
@DavidCorneth 4 жыл бұрын
I added a bunch of links to Michaels videos to the Online Encyclopedia of Integer Sequences (OEIS). See oeis.org/search?q=%22Michael+Penn%22&sort=&language=&go=Search. Some of his video's contain integers sequences, some give a constant which is in OEIS. I got word from Neil Sloane (the founder) saying "the more we have the better!". Can you maybe help by saying which of his video's could be in OEIS to which sequence?
@jounik
@jounik 4 жыл бұрын
And that's a good place to flip.
@royalmate9919
@royalmate9919 4 жыл бұрын
Sir, please solve questions which are involving mod
@hassanalihusseini1717
@hassanalihusseini1717 4 жыл бұрын
Amazing backflip.... but can you next time multiply it by (-1)? :-)
@dkravitz78
@dkravitz78 Жыл бұрын
Cos^2-sin^2 is sin+cos times sin-cos. Easy u sub from there.
@prabkiratsingh4846
@prabkiratsingh4846 4 жыл бұрын
It would have been easier with cos 2x identify
@freddysilva1938
@freddysilva1938 4 жыл бұрын
Amazing. Mind blowing haha
@DrChess8
@DrChess8 4 жыл бұрын
Beautiful maths, thank you!
@nelprincipe
@nelprincipe 4 жыл бұрын
you could use the identity cos2x = cos^2(x) - sin^2(x) to simplify steps on the first example.
@lukaobradovic9629
@lukaobradovic9629 4 жыл бұрын
Sharpen your integration skills: buy a calculator
@djvalentedochp
@djvalentedochp 4 жыл бұрын
back flips yay
@MelonMediaMedia
@MelonMediaMedia 4 жыл бұрын
For the first one you can use cos^2-(x)sin^2(x)=cos(2x) Edit: and for the 2nd one I think you can use complex definition for cosine, and the e^x thing for the hyperbolic cosine and do some stuff with it
@drsonaligupta75
@drsonaligupta75 4 жыл бұрын
The first one could have been done by cos2x=cos^2x -sin^2x
@anjaneyasharma322
@anjaneyasharma322 4 жыл бұрын
Trigo calculus the way it is being taught is nonsense. Draw the graph for the function. Find out the average value of Y Multiply it by the base in radians. U get the area under the curve Integration finished I have crossed 60 reading such mistakes. The instructor has not yet realized. As for t shirts they are fine so no need of this type of selling.
A nice integral.
12:59
Michael Penn
Рет қаралды 43 М.
This trick is new to me!
12:40
Michael Penn
Рет қаралды 60 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
M098 1.1 Pace Values
11:08
Lakshmi Dalwalla
Рет қаралды 3
BIG brilliant integral
14:55
blackpenredpen
Рет қаралды 105 М.
Q8, OH MAN, THAT - 1
10:23
blackpenredpen
Рет қаралды 105 М.
A very unfriendly integral problem!
17:13
Michael Penn
Рет қаралды 68 М.
A viewer suggested integral.
14:11
Michael Penn
Рет қаралды 63 М.
how Richard Feynman would integrate 1/(1+x^2)^2
8:53
blackpenredpen
Рет қаралды 533 М.
A fun functional equation!!
11:13
Michael Penn
Рет қаралды 156 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 140 М.
two ways, one sum
14:03
Michael Penn
Рет қаралды 7 М.
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 715 М.
“Don’t stop the chances.”
00:44
ISSEI / いっせい
Рет қаралды 62 МЛН