Summing An Interesting Series

  Рет қаралды 1,865

SyberMath Shorts

SyberMath Shorts

Күн бұрын

Пікірлер: 15
@ExtinctTrain671
@ExtinctTrain671 3 күн бұрын
In my real analysis textbook, this was about when power series were being thought of and Leonhard Euler came up with his Basel problem solution with the same concept. Pretty cool!!!
@dan-florinchereches4892
@dan-florinchereches4892 3 күн бұрын
Nice approach Sybermath. But I still like Michael Penn's method in his video "A nice approach to the alternating harmonic series"
@EternalSlumberer
@EternalSlumberer 2 күн бұрын
I asked this question to my math teacher in class hoping to kill some time, but he just uses the mc laurin expansion for ln(1+x)
@Straight_Talk
@Straight_Talk 3 күн бұрын
And so on and so fourth…
@jahblohnsteron
@jahblohnsteron 3 күн бұрын
lol
@abdisalanmohamed1564
@abdisalanmohamed1564 4 күн бұрын
Thank u Teacher
@holyshit922
@holyshit922 3 күн бұрын
Looks like ln of 2 The other sum diverges
@s1ng23m4n
@s1ng23m4n 4 күн бұрын
1 - x + x^2 - x^3 + ... = 1 + (-x) + (-x)^2 + (-x)^3 + ... = 1 / (1 - (-x)) = 1 / (1 + x)
@elpescado2201
@elpescado2201 4 күн бұрын
I think i saw once that conmutating the terms of the series is only valid if you already know it converges... so, is there a way to show that it is convergent before actually computong the sum?
@robertveith6383
@robertveith6383 4 күн бұрын
Is the following a hint? S = 1 - 1/2 + 1/3 - 1/4 + 1/5 - ... S = (1 - 1/2) + (1/3 - 1/4) + ... S = 1/2 + 1/12 + ... So, S > 1/2. Also, S = 1 - (1/2 - 1/3) - (1/4 - 1/5) - ... S = 1 - 1/6 - 1/20 - ... So, S < 1. Therefore, 1/2 < S < 1.
@pavlopanasiuk7297
@pavlopanasiuk7297 3 күн бұрын
​@@robertveith6383 that doesn't speak of convergence. Alternating +1-1 series is also constrained, but it's divergent. The convergence here is guaranteed to Leibniz check. It is a much broader question on whether ln(1+x) would accurately describe the corresponding power series on its convergence boundary (which it does here, but it isn't guaranteed). Complex analysis, in my memory, doesn't speak about boundary convergence
@mohamedomrane5481
@mohamedomrane5481 4 күн бұрын
so long your method😯
@Belgi_an_pizza
@Belgi_an_pizza Күн бұрын
You could have put r=-x and it'd work out😢
@shmuelzehavi4940
@shmuelzehavi4940 3 күн бұрын
|x| mut be less than 1 otherwise, f'(x) does not converge to 1/(x+1).
@Don-Ensley
@Don-Ensley 4 күн бұрын
problem Can you sum 1 -1/2 + 1/3-1/4+1/5-1/6+... Let f(x) = ln( 1 + x ) We derive a Maclaurin series for ln( 1 + x ). Take the derivatives of f(x). f¹(x) = ( 1 + x )⁻¹ f²(x) =(-1) 1! ( 1 + x )⁻² f³(x) =(-1)² 2! ( 1 + x )⁻³ f⁴(x) =(-1)³ 3! ( 1 + x )⁻⁴ : : fⁿ(x) =(-1)⁽ⁿ⁻¹⁾ (n-1)! ( 1 + x )⁻ⁿ : : The Taylor series is f(x) = f(a) + f¹(a)(x-a)/1! + f²(a)(x-a)² /2! + f³(a)(x-a)³ /3! +... = ln( 1 + a )+ (1+a)⁻¹(x-a)/1! + (-1)1!(1+a)⁻²(x-a)² /2! + (-1)² 2! (1+a)⁻³ (x-a)³ /3! +... = ln(1+a)+ ͚ Σ(-1)⁽ⁿ⁻¹⁾(n-1)!(1+a)⁻ⁿ (x-a)ⁿ/(n!) ⁿ⁼¹ = ln(1+a)+ ͚ Σ(-1)⁽ⁿ⁻¹⁾(1+a)⁻ⁿ (x-a)ⁿ/n ⁿ⁼¹ Expand about a= 0 for the Maclaurin series. ͚ ln(1+x) = Σ(-1)⁽ⁿ⁻¹⁾ x ⁿ/n ⁿ⁼¹ Note that for x=1, this series is identical to the one we are finding. ͚ ln(2) = Σ(-1)⁽ⁿ⁻¹⁾/n ⁿ⁼¹ = 1 -1/2 + 1/3 -1/4 + 1/5-1/6+... The series ͚ S= Σ 1/n = 1 + 1/2 + 1/3 + 1/4 +... ⁿ⁼¹ is called the harmonic series, and is divergent. S → ∞ answer ln(2)
Why Majora's Mask's Blue Dog Took 25 Years to Win the Race
21:04
Vidya James
Рет қаралды 2,6 МЛН
Solving A Nice Cubic Equation
10:27
SyberMath Shorts
Рет қаралды 1,7 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Simplifying An Interesting Radical
9:51
SyberMath
Рет қаралды 4,1 М.
An Interesting Quintic | Problem 472
9:33
aplusbi
Рет қаралды 911
A Super Nice Exponential Equation
7:39
SyberMath Shorts
Рет қаралды 3 М.
Mathematics doesn't actually make any sense
13:37
Sheafification of G
Рет қаралды 51 М.
Find f(x) ( JEE ADV 2024) #1
12:43
Prime Newtons
Рет қаралды 13 М.
A dice problem that blew my mind
8:16
Ben Zinberg, Math Tutor
Рет қаралды 6 М.
An Interesting Radical Expression
8:16
SyberMath Shorts
Рет қаралды 1,4 М.
The secret behind constants
18:04
MAKiT
Рет қаралды 27 М.