Simplifying An Infinite Radical Expression

  Рет қаралды 179,970

SyberMath

SyberMath

Күн бұрын

🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts) and my first video in short form! Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
/ @sybermathshorts
⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
My merch → teespring.com/...
Follow me → / sybermath
Subscribe → www.youtube.co...
⭐ Suggest → forms.gle/A5bG...
If you need to post a picture of your solution or idea:
in...
#ChallengingMathProblems #Radicals
via @KZbin @Apple @Desmos @NotabilityApp
@googledocs @canva
PLAYLISTS 🎵 :
Number Theory Problems: • Number Theory Problems
Challenging Math Problems: • Challenging Math Problems
Trigonometry Problems: • Trigonometry Problems
Diophantine Equations and Systems: • Diophantine Equations ...
Calculus: • Calculus

Пікірлер: 142
@SyberMath
@SyberMath 2 жыл бұрын
🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts) and my first video in short form! Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡 www.youtube.com/@SyberMathShorts
@DucLE-zv2lh
@DucLE-zv2lh 2 жыл бұрын
\\âbio
@DucLE-zv2lh
@DucLE-zv2lh 2 жыл бұрын
\\âbio
@randomjin9392
@randomjin9392 2 жыл бұрын
A bit more formal way for the sum: we set f(x) = ∑sx⁻ᔆ, x > 1; then ∫(f(x)/x)dx = -∑x⁻ᔆ = -(1/x)/(1-1/x) = -1/(x-1), differentiating back gets us f(x) = x/(x-1)² and our sum is simply f(2)
2 жыл бұрын
I'm seem to be the only one doing the infinite product directly -- without using series. I don't want to brag -- it could be a dumb thing to do. But this far I have always got it right. On the other hand multiplication is of course based on addition. Many of these KZbin mathematics channels -- this one in particular -- is very entertaining and give very useful POV's even if you like me are really only interested in unsolved problems -- besides the valuable didactics tips.
@suryatejapopuri9610
@suryatejapopuri9610 2 жыл бұрын
How did you get to type sigma in KZbin.
@rotten-Z
@rotten-Z 2 жыл бұрын
@@suryatejapopuri9610 ∆≠∞
@HoSza1
@HoSza1 2 жыл бұрын
@@suryatejapopuri9610 Magic of utf8 tables... and a bit of copy/paste glue that holds the entire internet together!
@HoSza1
@HoSza1 2 жыл бұрын
@ With all due respect sir, saying that still counts as bragging unless you show your solution, that is.
@harshkhare7084
@harshkhare7084 2 жыл бұрын
Another way: NOTE: the dotted lines mean that the sequence IN THE BRACKETS continue till infinity in a set fashion. A single dot is same as the multiplication (*) sign. Let: x =√2(√2²√2³.....). Note that in the ABSENCE of brackets, the √ covers the successive terms as well. Square both sides to get: 2(√2²(√2³....)) = x² √2²(√2³(√2⁴......)) = x²/2. This can be re written as: √2.2(√2.2²(√2.2³.......)) = x²/2 Note that the obtained equation is SOMEWHAT similar to the original equation, except for the fact that instead of 2, we have 2√2 in each term. If we manage to filter out √2 from each of these terms, we can then get a characteristic equation in terms of x. After filtering the √2 terms and expressing them as filtered-out individual terms, we can re-write the equation as: (√2)(√√2)(√√√2).... * (√2(√2(√2.....))) = x²/2 Notice the brackets. They separate the terms √ is distributed over from the ones it is not. Note that the last term is same as x. And the terms before them result in 2^y where y is a Geometric Progression (GP). We again re-write the equation as: 2^((1/2)+(1/4)+(1/8)+.....) * x = x²/2 Solving the GP in the power, we get: 2x = x²/2 x² - 4x = 0 x.(x-4) = 0 x = 0,4. Since x is increasing function, the value of x is 4.
@SyberMath
@SyberMath 2 жыл бұрын
Nice!
@Micro-Moo
@Micro-Moo 2 жыл бұрын
@@SyberMath Hey, you up-vote people admiring your video and ignore most of the comments showing much better solutions. Think what people should think of you.
@pwmiles56
@pwmiles56 2 жыл бұрын
Nice one. I got bored doing it the video way so I found this. Trickle through a factor of 2, which becomes a 4 under the next square root: x = sqrt(2 sqrt(4 sqrt(8 sqrt( ...)))) 2x = sqrt(2.2.2 sqrt(4 sqrt(8 sqrt( ...)))) 2x = sqrt(2.2 sqrt(2.4.2 sqrt(8 sqrt( ...)))) 2x = sqrt(2.2 sqrt(2.4.sqrt(2.8.2 sqrt( ...)))) 2x = sqrt(4 sqrt(8.sqrt(16 sqrt( ...)))) 4x = 2 sqrt(4 sqrt(8.sqrt(16 sqrt( ...)))) sqrt(4x) = x 4x = x^2 x = 4
@pwmiles56
@pwmiles56 2 жыл бұрын
@Nigelfarij Fair point. Maybe demonstrate the sequence is increasing, then find an upper bound?
@ufukkoyuncu3408
@ufukkoyuncu3408 2 жыл бұрын
Very nice solutıon
@artham2676
@artham2676 2 жыл бұрын
@Nigel 0:22
@РичиЯркий
@РичиЯркий 2 жыл бұрын
You lost value 0, and autor of video too)
@serulu3490
@serulu3490 2 жыл бұрын
x also equals to 0 lmao
@akifbaysal9141
@akifbaysal9141 2 жыл бұрын
I noticed that there is a shortcut solution by squaring and pulling 4 from all levels beyond 2 to one earlier level, which gives L^2 = 4 L (where L is the limit or solutiom). I saw few people have already mentioned this quicker solution..
@iabervon
@iabervon 2 жыл бұрын
When I saw that sum, I was wondering how you were going to evaluate it without power series and calculus, which seemed like a lot more advanced math to introduce for this problem.
@jennifertate4397
@jennifertate4397 Жыл бұрын
Love it! Mathematics is so cool! Thanks syber dude!
@SyberMath
@SyberMath Жыл бұрын
Happy to help!
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
If we want to be rigorous, then we need to talk about sequences and limits of sequences. Here, it seems as though the sequence of interest goes as 1, sqrt(2), sqrt(2·sqrt(4)), sqrt(2·sqrt(4·sqrt(8))), etc. This can be rewritten as 1, 1·sqrt(2), 1·sqrt(2)·sqrt(sqrt(4)), 1·sqrt(2)·sqrt(sqrt(4))·sqrt(sqrt(sqrt(8))), etc. Let f : [0, ∞) -> [0, ∞) such that f(x) = sqrt(x) everywhere, and let f^m denote the mth iterate of f, such that f°f^m = f^(m + 1), and f^0 = id, the identity function. The sequence can further be rewritten as (f^0)(2^0), (f^0)(2^0)·(f^1)(2^1), (f^0)(2^0)·(f^1)(2^1)·(f^2)(2^2), etc. It is now clearly visible that this is a partial product sequence. Thus, let g : N -> (0, ∞) be defined by the recursion g(0) = (f^0)(2^0) = 1, and g(m + 1) = g(m)·(f^(m + 1))(2^(m + 1)). We have now formally defined the sequence we are studying, but how are we supposed to proceed with the analysis? Notice that 2^m = exp(ln(2)·m). Also, notice that f(exp(ln(2)·m)) = exp(ln(2)·m/2), and more generally, (f^n)(2^m) = exp(ln(2)·m/2^n). If this is not obvious, then you can prove it by induction. Therefore, (f^m)(2^m) = exp(ln(2)·m/2^m). Also, g(m) = exp(ln(g(m))). Thus, we have exp(ln(g(m + 1)) = exp(ln(g(m)))·exp(ln(2)·m/2^m) = exp(ln(g(m)) + ln(2)·m/2^m), and this is equivalent to ln(g(m + 1)) = ln(g(m)) + ln(2)·m/2^m. Let h(m) = ln(g(m)), so that h(0) = 0. Hence, h(m + 1) - h(m) = ln(2)·m/2^m. Let j(m) = m/2^m. The idea is to find the sequence of partial sums of j, multiply it by ln(2), set that equal to h, and find lim h, since lim h = ln(lim g). Hence, lim g = exp(lim h). Consider k : (-1, 1) -> (-∞, 1/2) such that k(x) = 1/(1 - x) everywhere. k has a Maclaurin series expansion, where the mth order Maclaurin term is equal to M(k, m, x) = x^m. The derivative of k, k', also has a Maclaurin series expansion, where the mth order Maclaurin term is M(k', m, x) = m·M(k, m - 1, x) = m·x^(m - 1), which you obtain by differentiation. Let λ(x) := x·k'(x) = x/(1 - x)^2. λ thus has mth order Maclaurin term M(λ, m, x) = m·x^m. Notice this: j(m) = M(λ, m, 1/2), and therefore, lim h = ln(2)·λ(1/2). Therefore, lim g = exp(lim h) = exp(ln(2)·λ(1/2)) = exp(ln(2)·(1/2)/(1 - 1/2)^2) = exp(ln(2)·(1/2)/(1/4)) = exp(2·ln(2)) = 2^2 = 4.
@leif1075
@leif1075 2 жыл бұрын
But hiw can you write a function f(×)= sqrt of x when x doesn't take every possible value between o and infinity it only.tales power of 2 values so it's not a continuous function so not sure how that is accurate or what you mean sorry?
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
@@leif1075 You do not need x to take on every value possible.
@prashantgujar9159
@prashantgujar9159 2 жыл бұрын
Well illustrated!
@SyberMath
@SyberMath 2 жыл бұрын
Thanks!
@thevectorspaceofmath
@thevectorspaceofmath 2 жыл бұрын
A joy to watch. Very inspiring :)
@SyberMath
@SyberMath 2 жыл бұрын
Glad you enjoyed it! 💖
@septembrinol1
@septembrinol1 Жыл бұрын
I liked the idea of breaking the series in pieces!
@danik0011
@danik0011 2 жыл бұрын
5:00 At this point, you just calculate those geometric series, 1/2+1/4+1/8+1/6...=1, there is a fully visual proof for that. 1/4+1/8+1/16+1/32...=1/2 and so on so we get 1+1/2+1/4+1/8+1/16... which goes to 2, and that is the exponent.
@giuseppemalaguti435
@giuseppemalaguti435 2 жыл бұрын
Se t=prodotti dei radicali, lnt=sommatoria dei logaritmi, e applicando la derivata delle serie risulta lnt=ln2*2=ln4 per cui t=4
@theothetorch8016
@theothetorch8016 2 жыл бұрын
My brain is screaming because all the expansion forces are starting to take a toll. Love it.
@SyberMath
@SyberMath 2 жыл бұрын
😁
@leif1075
@leif1075 2 жыл бұрын
@@SyberMath isn't that a dirty trick and not fair at 6:50 to keep writing them in the form with 1/2 in the denominator since no one ever does that and you would only know to do that if you knew the answer beforehand right? So shouldn't thst not count?
@oahuhawaii2141
@oahuhawaii2141 Жыл бұрын
This is an infinite product of diminishing terms. Each term is a successive power of 2 (2, 4, 8, 16, 32, ..., 2^i) under an increasing number of square roots applied to it to get the 2^i root. Thus, the expression is the square root of 2, times the 4th root of 4, times the 8th root of 8, times the 16th root of 16, times the 32nd root of 32, ..., ad infinitum. We write the continued product, P: P = √2*√√4*√√√8*√√√√16*√√√√√32*... We square this P: P^2 = 2*√4*√√8*√√√16*√√√√32*√√√√√64*... We divide this P^2 by P, by aligning terms with the same number of radicals: P^2/P = P = 2*√2*√√2*√√√2*√√√√2*√√√√√2*... This is a new form of P. We square this P: P^2 = 4*2*√2*√√2*√√√2*√√√√2*√√√√√2*... We divide this P^2 by P, by aligning terms with the same number of radicals: P^2/P = P = 4
@aguyontheinternet8436
@aguyontheinternet8436 2 жыл бұрын
This seems to be a unique solution. So, I will assume that this value converges, and does not oscillate or converge to infinity, and I will set it equal to x x=2^{1/2}2^{2/4}2^{3/8}2^{4/16}2^{5/32}... I will then take the square root x^{1/2}=2^{1/4}2^{2/8}2^{3/16}2^{4/32}... To further simplify this, I will also find the value of another infinite series, y, which I will make the same assumptions as with x y=2^{1/4}2^{1/8}2^{1/16}2^{1/32}2^{1/64}... y^{1/2}=2^{1/8}2^{1/16}2^{1/32}2^{1/64}2^{1/128}... y*y^{-1/2}=2^{1/4} y=2^{1/2} Now to continue, using my newly discovered y to my advantage y*x^{1/2}=2^{1/4}2^{1/4}2^{2/8}2^{1/8}2^{3/16}2^{1/16}2^{4/32}2^{1/32}... y*x^{1/2}=2^{2/4}2^{3/8}2^{4/16}2^{5/32}... 2^{1/2}*x^{1/2}=2^{2/4}2^{3/8}2^{4/16}2^{5/32}... (2x)^{1/2}=2^{2/4}2^{3/8}2^{4/16}2^{5/32}... x*(2x)^{-1/2}=2^{1/2} x=(2x)^{1/2}*2^{1/2} x=(2x*2)^{1/2} x=(2^{2}x)^{1/2} x=2x^{1/2} x^{1/2}=2 x=4 and there we go. This would look a lot nicer if youtube had a math function or something
@imonkalyanbarua
@imonkalyanbarua 2 жыл бұрын
Beautiful! 😍👏👏👏
@SyberMath
@SyberMath 2 жыл бұрын
Thank you! 😊
@shacharh5470
@shacharh5470 Жыл бұрын
I used another method, a method I picked up when I learned about generating functions.. S = sum from 1 to infinity of n/2^n. then 2 times S = sum from 1 to inifity of n/2^(n-1) = sum from 0 to infinity of (n+1)/2^n. S = 2S - S = the 2nd sum minus the first sum. So you get 1 + sum from 1 to infinity of 1/2^n = 1 + 1 = 2
@TomatoFryEgg
@TomatoFryEgg 2 жыл бұрын
I like the solution a lot! by using sum of geometric sequence and sum of geometric sequence of the each sum of geometric sequence it is a fantastic solution.
@nasrullahhusnan2289
@nasrullahhusnan2289 Жыл бұрын
The same technique can be used to find 1²+2²+3²+4²+...+n²=n(n+1)(2n+1)
@mathematics67
@mathematics67 2 жыл бұрын
Which software are U using?
@SyberMath
@SyberMath 2 жыл бұрын
Notability
@arkajitbhowmik7
@arkajitbhowmik7 2 жыл бұрын
Was there any way that we could Integrate n/(2^n) from 1 to infinity?
@vladimironoprienko7177
@vladimironoprienko7177 2 жыл бұрын
I guess the hard part is to prove that integral over continuous range equals discrete series sum.
@michaelpurtell4741
@michaelpurtell4741 2 жыл бұрын
Black pen had a video on n/2^n 3 years ago with a slightly different approach
@virentanti16
@virentanti16 2 жыл бұрын
i was thinking power series convergence and all but taking infinite number of gps and then taking sum of infinite gps was a pretty cool method! made my day
@subhashkumarsinha8252
@subhashkumarsinha8252 2 жыл бұрын
Beautiful
@SyberMath
@SyberMath 2 жыл бұрын
Thank you!
@yoav613
@yoav613 2 жыл бұрын
Nice one!😀💯
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
Did in my mind in around 25 seconds My ans = 4 Edit : I am right and my approach is WAYYYYYYYYY shorter than yours Just call the expression x, then multiply both sides by (*2) , you'll get x² = 4x, x≠0, x = 4 *Note : 2 = √2(√2(√2(√2...
@knutthompson7879
@knutthompson7879 2 жыл бұрын
Need to be careful. Your method assumes the limit exists. To be rigorous, you would need to show that.
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
@@knutthompson7879 Umm, √2(√2√.. = X X² = 2X X≠0, X=2 Where's the problem?
@thomaspickin9376
@thomaspickin9376 2 жыл бұрын
@@tbg-brawlstars The problem is the first line when you say the thing = X. You're assuming there is a defined value (which there may not be). I could use similar logic and say: 1/0 = X Take reciprocals and say: 1/X = 0/1 = 0. That isn't true though as X never existed in the first place. See what I mean? Or to make it clearer you could take an infinite sum say +1-1+1-1... Which has no defined value. Assign that to X, your calculations after wouldn't be valid as X actually doesn't have a value.
@knutthompson7879
@knutthompson7879 2 жыл бұрын
@@tbg-brawlstars As I say, there is an assumption that you skipped over. When you say “the value is x”, you assume there IS such a value, which has not been established. You can claim this is a stupid detail, but if you skip this step, you can prove a lot of incorrect things.
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
@@knutthompson7879 O lol so true Some months ago , I proved that the sum 2 + 2² + 2³ + ...∞ is equal to -2 😂 Jokes aside, how do I prove it ?
@qwang3118
@qwang3118 2 жыл бұрын
Let P = the expression. Then P = sqrt(4P). P^2 = 4P. P =4 or P = 1 (out). So the final solution is P = 4.
@MDSaad_IIT_BHU
@MDSaad_IIT_BHU 2 жыл бұрын
Sir you just blowed my mind ❤️🧡💛 Keep updating by these types
@SyberMath
@SyberMath 2 жыл бұрын
So nice of you
@dzigerica666
@dzigerica666 2 жыл бұрын
Nice one!
@captainteach007
@captainteach007 2 жыл бұрын
Nicely done!
@SyberMath
@SyberMath 2 жыл бұрын
Thanks!
@SuperMath111
@SuperMath111 Жыл бұрын
@@SyberMath Can you tell me, which software are using
@iRReligious
@iRReligious 2 жыл бұрын
That was dope! 👍
@SyberMath
@SyberMath 2 жыл бұрын
Glad you liked it!
@mantubera9073
@mantubera9073 2 жыл бұрын
Let, the given function is x Then, squaring both side we have, X²=2.2x x²-4x=0, x(x-4)=0, x is not equal to zero, Hence, x=4, the value of the given function is 4
@meehow72
@meehow72 2 жыл бұрын
This literally just fried my brain
@SyberMath
@SyberMath 2 жыл бұрын
Sorry 😁
@ygalel
@ygalel 2 жыл бұрын
Waaaahhh that's awesome😂
@samarthchohan106
@samarthchohan106 Жыл бұрын
That series is agp series and it's sum using the agp infinite sum formula is 3 so the answer is 8 not 4
@pavankushwaha9848
@pavankushwaha9848 2 жыл бұрын
Awesome bro
@SyberMath
@SyberMath 2 жыл бұрын
Thanks
@billliu1441
@billliu1441 2 жыл бұрын
没必要解这么复杂! 令原式=A 则A*A=2*A*root(2root2(root2…)))) 于是A=2*root(2root2(root2…)))) 则A*A=4*2*root(2root2(root2…)))) 则A*A=4*A 结果 A=4
@corkdiamond663
@corkdiamond663 2 жыл бұрын
It's 2 power sum to infinity of agp
@dusanlazic7422
@dusanlazic7422 2 жыл бұрын
KAKVU PRAKTICNU ULOGU IMA OVA TRAUMA MOZGA ?
@comfycomfy2003
@comfycomfy2003 2 жыл бұрын
The calculator said that this task equals 3,0844.. so on, please explain me so wrong? Task: 2^(1÷2)×4^(1÷4)×8^(1÷8)×16^(1÷16)
@mubashirraza1608
@mubashirraza1608 2 жыл бұрын
Can anyone tell me, which software he is using?
@SyberMath
@SyberMath 2 жыл бұрын
Notability
@Тюлень-о1м
@Тюлень-о1м 2 жыл бұрын
Nice video, good luck
@social6332
@social6332 2 жыл бұрын
good question.
@SyberMath
@SyberMath 2 жыл бұрын
Thanks
@ahmetarifcan7798
@ahmetarifcan7798 2 жыл бұрын
Ercüment senin yapacağın işi
@mintusaren895
@mintusaren895 2 жыл бұрын
Root of straight line
@travisporco
@travisporco 2 жыл бұрын
fascinating
@SyberMath
@SyberMath 2 жыл бұрын
😊
@braydentaylor4639
@braydentaylor4639 2 жыл бұрын
Beautiful problem
@SyberMath
@SyberMath 2 жыл бұрын
Thank you!
@sinforpizero
@sinforpizero 2 жыл бұрын
we can make an equation n=√4n n=4 n=0 and the answer clearly not 0.
@lazymello6778
@lazymello6778 2 жыл бұрын
i did it this way: sqrt(2(sqrt(2^2(sqrt2^3... ))))= x =sqrt(2(sqrt(2*2(sqrt(2*2^2(...)))))) (taking seperated 2's as sqrt(2) in the bigger/preceeding radicals) =sqrt(2sqrt(2)*sqrt(2sqrt(2)*sqrt(2^2sqrt(2)*...))) =sqrt(4sqrt(2sqrt(4sqrt(8sqrt(16)...)))) = sqrt(4x)=x therefore, 4x = x^2 x^2 - 4x = 0 x=4 [not 0 cuz... no] i had a stroke writing this lol
@Serizon_
@Serizon_ 2 жыл бұрын
nice video
@SyberMath
@SyberMath 2 жыл бұрын
Thank you!
@ikonkar1208
@ikonkar1208 2 жыл бұрын
Head spinning exercise
@dusanlazic7422
@dusanlazic7422 2 жыл бұрын
ZASTO BRISES KOMENTARE ?
@vh73sy
@vh73sy 2 жыл бұрын
P(v,k) = Product( (v^k)^(v^-k) ), k=1 to inf = v^(v/(v-1)^2) Where v>1, v is integer When v=2 => P(2,k)= 4
@imdatkoksal6187
@imdatkoksal6187 2 жыл бұрын
I didnt understand your solution
@jamesstrickland833
@jamesstrickland833 2 жыл бұрын
I generalized this technique for any polynomial numerator over a geometric term that converges. Even showed how it works for alternating sequences that absolutely convege kzbin.info/www/bejne/gGHKpIGNip56bdk
@xukinei4323
@xukinei4323 2 жыл бұрын
巧!
@ВасилийДрагунов-н8т
@ВасилийДрагунов-н8т 2 жыл бұрын
Why does noone care about convergence of the sequence...
@астемиртлупов-х3д
@астемиртлупов-х3д 2 жыл бұрын
Незнаю как но я в уме решил
@堀勇作-l5p
@堀勇作-l5p 2 жыл бұрын
答え 4
@robertveith6383
@robertveith6383 2 жыл бұрын
*SyberMath* -- You described this wrong right at the beginning. You said, "We have the square root of two times the square root of four times the square of eight ..." Then you corrected yourself as you explained this problem is nested square roots. Go back and listen to the very beginning, please.
@rakenzarnsworld2
@rakenzarnsworld2 2 жыл бұрын
Answer: 2
@alfa2k3
@alfa2k3 Жыл бұрын
Niceee
@SyberMath
@SyberMath Жыл бұрын
Thanks 🤗
@sonaruo
@sonaruo 2 жыл бұрын
lol why you make your life hard?? 1/2+ 1/4 is 1 the other one will be 1/2 the other one will be 1/4 the other one 1/8 and if you add them again it will be a 2 so you have 2 raised on 2 so 4
@temen1167
@temen1167 2 жыл бұрын
sqrt(2*sqrt(4*sqrt(8*sqrt(16*....)))) = x; sqrt(2*2*sqrt(2*sqrt(4*sqrt(8*sqrt(16*....)))) = x; sqrt(4*x) = x; x^2 - 4x = 0; x(x - 4) = 0; so x = 4 and it brings us to the end of this comment
@mathsknowledge6194
@mathsknowledge6194 2 жыл бұрын
Answer is 4
@DeadJDona
@DeadJDona 2 жыл бұрын
42.0
@toanpham4110
@toanpham4110 2 жыл бұрын
@speedcubesolver1195
@speedcubesolver1195 2 жыл бұрын
👍👍👍
@letswaveabook3183
@letswaveabook3183 2 жыл бұрын
I haven't worked it out on paper, but if we call the nested root a, we can take a sqrt(4) out of each root, then we find a=sqrt(4)*sqrt(a) from which follows that a=4
@ssunahohlov
@ssunahohlov 2 жыл бұрын
Решается проще, в уме, за 1 минуту. Автор тут мути какой-то налил
@李家生-j2v
@李家生-j2v 2 жыл бұрын
4
@РичиЯркий
@РичиЯркий 2 жыл бұрын
U lost one value) Let this expression x, so x^2=4x x=4 and 0
@vnagaraju6265
@vnagaraju6265 2 жыл бұрын
32
@redouanchab3an331
@redouanchab3an331 2 жыл бұрын
22
@Deepthivlogsa
@Deepthivlogsa 2 жыл бұрын
Jai Pawan Kalyan
@ahmetarifcan7798
@ahmetarifcan7798 2 жыл бұрын
Yaw bramınlar neyi yapamadınız hepsini 2 üzeri eşit kuvvette alın ne uğraşıyorsunuz 8/16 + 8/16 + 6/16 + 4/16 = 26/16 = 13/8 bu da 2 nin 1+5/8 inci kuvveti olduğunu söylüyor cevabın
@Deepthivlogsa
@Deepthivlogsa 2 жыл бұрын
Jai Janasena
@T.N.O.K-Century
@T.N.O.K-Century 2 жыл бұрын
To evaluate Σ[k=1→∞] (2^(-k)), you can get the answer by thinking that you cut the 1×1 square in two halves continuously I reckon. Anyway, I love your math videos so hold up the good work😊
@csongor-tiborpeli374
@csongor-tiborpeli374 2 жыл бұрын
Ans 3.8.....
@ttrgan
@ttrgan 2 жыл бұрын
i used limit for the converging series and got ⁴√2
@toanpham4110
@toanpham4110 Жыл бұрын
@vv7293
@vv7293 2 жыл бұрын
4
Solving a Nice Ln Equation in Two Ways
6:07
SyberMath
Рет қаралды 19 М.
An Exponentially Trigonometric Equation
10:50
SyberMath
Рет қаралды 912
Vampire SUCKS Human Energy 🧛🏻‍♂️🪫 (ft. @StevenHe )
0:34
Alan Chikin Chow
Рет қаралды 138 МЛН
A Nice Infinite Radical
8:37
SyberMath
Рет қаралды 17 М.
Ramanujan's infinite root and its crazy cousins
17:17
Mathologer
Рет қаралды 1,3 МЛН
Can you crack this beautiful equation? - University exam question
18:39
Leonhard euler the greatest of all
10:22
ever d!d
Рет қаралды 19 М.
An Interesting Equation From Math Olympiads
9:57
SyberMath
Рет қаралды 1,7 М.
Two nice nested radicals.
14:52
Michael Penn
Рет қаралды 23 М.
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 959 М.
An Exact Formula for the Primes: Willans' Formula
14:47
Eric Rowland
Рет қаралды 1,4 МЛН
An Interesting Nonstandard Equation With Logs
11:39
SyberMath
Рет қаралды 6 М.
A Quick and Easy Radical Equation
9:16
SyberMath
Рет қаралды 7 М.
Vampire SUCKS Human Energy 🧛🏻‍♂️🪫 (ft. @StevenHe )
0:34
Alan Chikin Chow
Рет қаралды 138 МЛН