A Nice Infinite Radical

  Рет қаралды 17,547

SyberMath

SyberMath

Күн бұрын

Пікірлер: 53
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
The rigorous way to do this is to define the double-sequence S : N^2 -> R such that S(m, m) = sqrt(1/2^(2^m)) everywhere and S(m, n) = sqrt(1/2^(2^n) + S(m, n + 1)) everywhere. To get a sense of what is happening, notice that S(0, 0) = sqrt(1/2), so S(0, 0) = sqrt(1/2 + S(0, 1)) = sqrt(1/2 + sqrt(1/4 + S(0, 2))), etc. S(1, 1) =sqrt(1/4) = 1/2, so S(1, 1) = sqrt(1/4 + S(1, 2)) = sqrt(1/4 + sqrt(1/16 + S(1, 3))), etc. S(1, 0) = sqrt(1/2 + S(1, 1)) = sqrt(1/2 + sqrt(1/4)), so S(2, 0) = sqrt(1/2 + sqrt(1/4 + sqrt(1/16))), etc. Now, it is more apparent what we should do: we want is to let f : N -> R, such that f(m) = S(m, 0) everywhere. The task is to find lim(f), if it exists. To try to make some progress, let us go to the equation S(m, n) = sqrt(1/2^(2^n) + S(m, n + 1)). Let m |-> m + n + 1, so that the equation reads S(m + n + 1, n) = sqrt(1/2^(2^n) + S(m + n + 1, n + 1)). Now, let m |-> 0, giving us that S(n + 1, n) = sqrt(1/2^(2^n) + S(n + 1, n + 1)) = sqrt(1/2^(2^n) + sqrt(1/2^(2^(n + 1))) = sqrt(1/2^(2^n) + 1/2^(2^n)) = sqrt(2/2^(2^n)) = sqrt(2)•S(n, n). Now we go back to S(m, n) = sqrt(1/2^(2^n) + S(m, n + 1)), and let m |-> m + n + 2, hence S(m + n + 2, n) = sqrt(1/2^(2^n) + S(m + n + 2, n + 1)). Let m |-> 0, so S(n + 2, n) = sqrt(1/2^(2^n) + S(n + 2, n + 1)) = sqrt(1/2^(2^n) + sqrt(2)•S(n + 1, n + 1)) = sqrt(1/2^(2^n) + sqrt(2)•1/2^(2^n)) = sqrt(1 + sqrt(2))•sqrt(S(n, n)). Go back, and instead, let m |-> m + n + 3. This yields S(m + n + 3, n) = sqrt(1/2^(2^n) + S(m + n + 3, n + 1)), and m |-> 0 implies S(n + 3, n) = sqrt(1 + sqrt(1 + sqrt(2))•sqrt(S(n, n)). This motivates the following conjecture: S(n + p, n) = (f^p)(1)•S(n, n), where f : [0, ∞) -> [0, ∞) and f(x) = sqrt(1 + x) everywhere. The base case was already proven, so we proceed to use induction. So, in the equation S(m, n) = sqrt(1/2^(2^n) + S(m, n + 1)), let m |-> m + n + p + 1, so S(m + n + p + 1, n) = sqrt(1/2^(2^n) + S(m + n + p + 1, n + 1)), and m |-> 0 implies S(n + p + 1, n) = sqrt(1/2^(2^n) + S(n + p + 1, n + 1)) = sqrt;(1/2^(2^n) + (f^p)(1)•S(n + 1, n + 1)) = sqrt(1/2^(2^n) + (f^p)(1)•sqrt(1/2^(2^(n + 1)))) = sqrt(1/2^(2^n) + (f^p)(1)•1/2^(2^n)) = sqrt(1 + (f^p)(1))•sqrt(1/2^(2^n)) = (f^(p + 1))(1)•S(n, n). This completes the proof of the conjecture by induction, and so, we can conclude for all p in N that S(n + p, n) = (f^p)(1)•sqrt(1/2^(2^n)). Hence, n |-> 0 means S(p, 0) = h(p) = (f^p)(1)•sqrt(1/2) everywhere. From here, it is easy to recognize that lim(h) = φ/sqrt(2) = (1 + sqrt(5))/(2•sqrt(2)). Q. E. D.
@SyberMath
@SyberMath 2 жыл бұрын
Great, as always!
@leif1075
@leif1075 2 жыл бұрын
@@SyberMath I'm curious whybdidnt you use the infinite series Sqrt 1/2 + sqrtswrt1/2 instead of using 1 as the term I the test series..since we have 1/2...and youndidnt make it clear what is x..x is the original infinite series I presume right?
@metehan9185
@metehan9185 2 жыл бұрын
Holy shi.....
@Qermaq
@Qermaq 2 жыл бұрын
This one is like watching a really complicated movie where at the end all the threads are tied together in a bow. :D
@SyberMath
@SyberMath 2 жыл бұрын
Good to hear!
@wannabeactuary01
@wannabeactuary01 2 жыл бұрын
I like this approach - partial sequences or series are fine but this is better and with some mental effort clearer - thank you.
@AdityaKumar-gv4dj
@AdityaKumar-gv4dj 2 жыл бұрын
Nice video with a amazing solution
@SyberMath
@SyberMath 2 жыл бұрын
Thank you!
@MrLidless
@MrLidless 2 жыл бұрын
Similar to how you started, you can see that x² - 1/2 = x / √ 2, and it drops out from there.
@TechyMage
@TechyMage 2 жыл бұрын
After wasting some time here is what i did x=√(1\2+√(1/4+......)) Take 1/√2 common we get: x=√(1/2+x/√2) Squaring both sides we get: 2x²-√2x-1=0 Use quadratic formula and u will end up with the same answer(don't forget to reject the negative value)
@jmart474
@jmart474 2 жыл бұрын
Nice solution! Really difficult to see the result of extracting the common factor.👍
@zunaidparker
@zunaidparker 2 жыл бұрын
Interesting radical! I would like to see the actual convergence proof itself. As it is now, it feels like we just applied a clever trick to "get" to the answer in a predetermined way. But the true value of this question lies in learning how to prove convergence and learning about how such radicals behave and their properties. Maybe something for a follow up video?
@elrichardo1337
@elrichardo1337 2 жыл бұрын
to start maybe look up “herschfeld’s convergence theorem”? it’s a generalization of convergence conditions to any infinitely nested radical
@SyberMath
@SyberMath 2 жыл бұрын
Thank you for the feedback! I like the 'doing' part not the 'proving' part so I'm not rigorous in that sense. 😜😁🤓 Check out the pinned comment by Angel Mendez-Rivera, though!
@zunaidparker
@zunaidparker 2 жыл бұрын
@@SyberMath thanks will do! There's nothing wrong with the doing part either, only challenge is that it feels sometimes very arbitrary how you get to the solution. It can come across that you either already had the answer and reverse engineered the question, or you looked up the solution and are just going through the motions to get there without applying any thought out method yourself while skipping over the important details. Especially when it's some sort of clever trick or substitution like in this case, it doesn't teach us anything to just watch you plug and play without any deeper thought process or explaining interesting properties of the question. I could just ask Wolfram Alpha if I wanted the answer in that case. The beauty of having a human do the problem on a KZbin video is that they can explain the method and WHY you would use such a method in each case to solve a similar class of problems. Then we actually learn something from the video and there's value in you doing it live and narrating to us. Hope this helps.
2 жыл бұрын
If one really knows/understands the distribution on the left hand is the correct one (it's given if you see that it continues the pattern) then since the left hand side and the right hand side is equal in this case. The only question is about the radical equal to the Golden Section. And of course that you know about it and see the connection. The tremendous note by Angel Mendez-Rivera is a fine example of my saying that laziness don't take you far in a field. Besides being a good exercise in being formal and presenting a proof -- of what it states -- even though this isn't needed. (For this specific case, provided you know what you are doing to the left hand side gives the same thing numerically on the right hand side. For all l.h.s's a corresponding r.h.s.). It's maybe even an "overkill". Good how this question makes it so clear that algebra is so powerful. But also that algebra is very subtle and hard.
@anshnamdev4630
@anshnamdev4630 2 жыл бұрын
Nice sir.I like your explanation
@SyberMath
@SyberMath 2 жыл бұрын
Thanks for liking
@paragogosolokliroma6448
@paragogosolokliroma6448 2 жыл бұрын
Very interesting!Very good idea.
@SyberMath
@SyberMath 2 жыл бұрын
Thank you very much!
@ngothuyh
@ngothuyh 2 жыл бұрын
nice vid with a great solution!
@SyberMath
@SyberMath 2 жыл бұрын
Glad you think so!
@ItsSurgeee
@ItsSurgeee 2 жыл бұрын
was a bit confused about the x development But great vid
@BOBPERIO2
@BOBPERIO2 2 жыл бұрын
Excellent video! Thank you very much. 👍🏻
@SyberMath
@SyberMath 2 жыл бұрын
You are welcome!
@skwbusaidi
@skwbusaidi Жыл бұрын
For what value of x , the equation you show converge
@davidr482
@davidr482 2 жыл бұрын
Beautiful
@SyberMath
@SyberMath 2 жыл бұрын
Thank you
@sachs6
@sachs6 2 жыл бұрын
How can one prove it converges?
@SyberMath
@SyberMath 2 жыл бұрын
Check the pinned comment by Angel Mendez-Rivera .
@-basicmaths862
@-basicmaths862 Жыл бұрын
Substitute 1/2=a^2 & solved .
@emanuellandeholm5657
@emanuellandeholm5657 2 жыл бұрын
Happy holidays SyberMath! :)
@SyberMath
@SyberMath 2 жыл бұрын
Thank you! To you, too!!! 🥰🎉
@notlin1976
@notlin1976 2 жыл бұрын
Merry Christmas, Professor! 🧑🏽‍🎄🧑🏽‍🎄🧑🏽‍🎄🧑🏽‍🎄🧑🏽‍🎄🧑🏽‍🎄🧑🏽‍🎄
@SyberMath
@SyberMath 2 жыл бұрын
Thank you! Merry Christmas and Happy Holidays!!! 🥰🎉🥳
@stephenlesliebrown5959
@stephenlesliebrown5959 2 жыл бұрын
Great problem and very thorough discussion of the solution. You are an exceptionally talented professor of mathematics! Have a happy new year 🙂
@SyberMath
@SyberMath 2 жыл бұрын
Aww, thank you for the kind words! Happy Holidays and Happy New Year! 🥰💖
@John-Spartan03
@John-Spartan03 2 жыл бұрын
number syndrome or language syndrome!, I have number rejection syndrome
@RAG981
@RAG981 2 жыл бұрын
Clever.
@robertveith6383
@robertveith6383 2 жыл бұрын
*@ SyberMath* You have a typo at the end of the video in green. Instead of 1/6, it needs to be 1/16.
@SyberMath
@SyberMath 2 жыл бұрын
oopsies. Thanks for letting me know
@please.visit.wmscog.watv.
@please.visit.wmscog.watv. Жыл бұрын
Could you please help me to solve this: square root (1+ 2 square root (1 +3 square root (1 + 4 square root (1+ ...))))
@please.visit.wmscog.watv.
@please.visit.wmscog.watv. Жыл бұрын
Thank youuu!
@SyberMath
@SyberMath Жыл бұрын
kzbin.info/www/bejne/lX-ummuLo7CkfLM
@-basicmaths862
@-basicmaths862 Жыл бұрын
Answer=1?
@barakathaider6333
@barakathaider6333 2 жыл бұрын
👍
@andirijal9033
@andirijal9033 2 жыл бұрын
My answere differen metod
@angelamusiema
@angelamusiema Жыл бұрын
1,2⭐
@michaelempeigne3519
@michaelempeigne3519 2 жыл бұрын
cheap method but good.
@SyberMath
@SyberMath 2 жыл бұрын
Why cheap? 🤓😁😜
@michaelempeigne3519
@michaelempeigne3519 2 жыл бұрын
@@SyberMath it converges ?
@Drk950
@Drk950 Жыл бұрын
Let "x" be the seeked value and "r" the Golden ratio, I found: x^2 = (1/2)*(1+r) ----> x = (1/2)*sqrt(3+sqrt(5)). It's numerically equal to the answer expressed by @SyberMath, but looks uglier >•
An Exponential Equation | 27^x=1/x
8:49
SyberMath
Рет қаралды 204 М.
Solving A Radical Equation in Three Ways
8:59
SyberMath
Рет қаралды 10 М.
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
Two nice nested radicals.
14:52
Michael Penn
Рет қаралды 23 М.
An Exponentially Trigonometric Equation
10:50
SyberMath
Рет қаралды 1,8 М.
Another Exponential Logarithmic Expression
9:11
SyberMath
Рет қаралды 9 М.
Square-root of a matrix
13:51
Prime Newtons
Рет қаралды 37 М.
An awesome infinitely nested radical.
13:27
Michael Penn
Рет қаралды 55 М.
Ramanujan's Famous Infinite Radical
8:01
SyberMath
Рет қаралды 29 М.
finally 0^0 approaches 0 (after 6 years!)
14:50
blackpenredpen
Рет қаралды 492 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 130 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 311 М.
Solving an Infinite Radical Equation in Two Ways
8:41
SyberMath
Рет қаралды 10 М.
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН