Simultaneous eigenstates and quantization of angular momentum

  Рет қаралды 30,898

MIT OpenCourseWare

MIT OpenCourseWare

Күн бұрын

Пікірлер: 41
@MariaPereira-ho2ks
@MariaPereira-ho2ks Ай бұрын
this teacher is amazing!
@李愚-f7j
@李愚-f7j 4 жыл бұрын
@19:40 How could we know that this Legendre differential equation is solved by a series solution when simplified as m = 0? Thanks ^^ and I did not follow the calculate trick when plugging in the series solution in equation 3.16 and get the recursion relations between a(k+2) and a(k)
@blackberry596
@blackberry596 7 ай бұрын
Necroposting, but I believe the way to find this is by using the Frobenius method for solving differential equations which includes guessing at a solution of the form of a power series and then solving for the recursion relations to get explicit expressions for the coefficient a_n of the power series.
@neeteshmudgal1209
@neeteshmudgal1209 4 жыл бұрын
at 10:00 why prof, says that " phi -2pi will lead to inconsistency".. please explain anybody..
@李愚-f7j
@李愚-f7j 4 жыл бұрын
@Hamish Blair THANKS^^
@zphuo
@zphuo 7 жыл бұрын
@6:00, I don't understand why Lamda=l(l+1). Can somebody give me a explain ? thanks.
@geovanemarquez1531
@geovanemarquez1531 6 жыл бұрын
ZiPan Huo did you figure it out brother
@zphuo
@zphuo 6 жыл бұрын
No. I still don't know why we need it..
@geovanemarquez1531
@geovanemarquez1531 6 жыл бұрын
ZiPan Huo did you use Griffiths book too?
@zphuo
@zphuo 6 жыл бұрын
yes.
@m.s.6449
@m.s.6449 6 жыл бұрын
At that point, it's just a deliberately weird way of writing a positive real number (you can always find l so that l(l+1) equals any given positive real number). In the end, it will make formulas simpler.
@kumailhaider7933
@kumailhaider7933 3 жыл бұрын
8:30 can someone explain how we get the Legendre polynomial here in solution of differential equation
@berketozlu
@berketozlu 2 жыл бұрын
He just wrote it as an ansatz since the differential equation should solve for phi but there might be a term of theta too. So he just wrote it as Legendre polynomial without knowing what is that theta dependent term of the psi.
@andrewmanti235
@andrewmanti235 6 жыл бұрын
can anyone please explain the substituion of pl at 20:24,and how he got (k+1)(k+2)ak+2...? please
@立成王-n3i
@立成王-n3i 5 жыл бұрын
subtitute the P(x) Polynomial to the equation and let the coefficient of x^k(k=0,1,2...) equal to zero,just like the step in the harmonic oscillatior
@rodolfogonzalez9983
@rodolfogonzalez9983 4 жыл бұрын
it comes from solving the differential equation with power series. And it´s called recurrence relation
@cafe-tomate
@cafe-tomate 2 жыл бұрын
Why would the series diverge at X=±1 ?
@cordi-fm9tb
@cordi-fm9tb 6 ай бұрын
I had the same question. I think it's because the nth-term divergence test of the series. like if lim k goes to inf, the last term goes to 0 when abs(x)
@李愚-f7j
@李愚-f7j 4 жыл бұрын
also in ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/lecture-notes/MIT8_04S16_LecNotes20_21.pdf note of page 9 when we pick l = m terminate the series but( equ3.19) the recursion relations becomes zero, nothing exists how could we make p_sub _k(x) a k degree polynomial, also below is not in the lecture video (maybe too simple for them)the (3.21)Rodriguez formula and generating function (3.22)I searched Wikipedia en.wikipedia.org/wiki/Rodrigues%27_rotation_formula I still lost. Could anyone please enlighten me?
@jiaqigan6398
@jiaqigan6398 4 жыл бұрын
When we choose l=k as the highest term in the solution, terms which's power is smaller than k still remain there. To write a complete solution, you just need to set up the value of coefficient a_k, and then, go backwards, derive the value of a_(k-2),a_(k-4).... (You can find those steps in many good mathematical physics books). For the
@jiaqigan6398
@jiaqigan6398 4 жыл бұрын
For the Rodriguez formula, apply binomial theorem on the left hand side of the equation, then do the derivation, it's not hard. For the generating function of the
@jiaqigan6398
@jiaqigan6398 4 жыл бұрын
Legendre polynomials,it’s very similar to the generating function of the hermit polynomials.You can find some clear statements in Schiff’s book.
@李愚-f7j
@李愚-f7j 4 жыл бұрын
@@jiaqigan6398 THANK YOU VERY MUCH, I found the related contents in Schiff's book you mentioned , thanks!
@jiaqigan6398
@jiaqigan6398 4 жыл бұрын
@@李愚-f7j 哈哈,不客气
@davalentinalopez
@davalentinalopez 2 жыл бұрын
2:34 23:37
@wondererasl
@wondererasl Жыл бұрын
if m ==0, then p to the power of m is 1, right ?
@not_amanullah
@not_amanullah 6 ай бұрын
Thanks 🤍❤️
@not_amanullah
@not_amanullah 6 ай бұрын
This is helpful ❤️🤍
Associated Legendre functions and spherical harmonics
18:52
MIT OpenCourseWare
Рет қаралды 87 М.
Lecture 5: Operators and the Schrödinger Equation
1:23:14
MIT OpenCourseWare
Рет қаралды 676 М.
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН
Humanity's Divine Nature: Why Value is Real, Eternal, and Evolving
33:34
Footnotes2Plato
Рет қаралды 1,4 М.
Translation operator. Central potentials
19:14
MIT OpenCourseWare
Рет қаралды 27 М.
The most significant genius: Emmy Noether
10:24
Fermilab
Рет қаралды 360 М.
4. Spin One-half, Bras, Kets, and Operators
1:24:32
MIT OpenCourseWare
Рет қаралды 156 М.
2023 MIT Integration Bee - Finals
28:09
MIT Integration Bee
Рет қаралды 2,1 МЛН
All Basics About Angular Momentum in QUANTUM Mechanics
15:46
Alexander (fufaev.org)
Рет қаралды 32 М.
Lecture 1: Introduction to Superposition
1:16:07
MIT OpenCourseWare
Рет қаралды 8 МЛН
To Understand the Fourier Transform, Start From Quantum Mechanics
31:37
Physics with Elliot
Рет қаралды 525 М.
Rydberg atoms
26:23
MIT OpenCourseWare
Рет қаралды 20 М.
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН