The Limit Comparison Test - Proof

  Рет қаралды 13,968

slcmath@pc

slcmath@pc

Күн бұрын

Course Web Page: sites.google.c...

Пікірлер: 31
@drhubblebubble7
@drhubblebubble7 9 жыл бұрын
Damn, very well worded and concise. Thanks a lot for making this proof clear, I feel as if the calculus teachers I've had really speed through series too much and don't put in the time to clearly and simply show where these tools come from.
@lukepaluso9863
@lukepaluso9863 5 жыл бұрын
I agree, I've just drawn the conclusion that it is up to me to satisfy my own curiosities, it's unfair (in my opinion) to expect any program designed to teach numerous people at once to satisfy my curiosities of a topic. There is always room for me to want to learn more
@hizircanbayram9898
@hizircanbayram9898 7 жыл бұрын
I've just wanted to thank you to meet us these stimulating videos!
@jorgeluisrodriguez3271
@jorgeluisrodriguez3271 2 жыл бұрын
So if I understood the video at 4:39, to make boundaries for the value of the any series, we must prove term by term that: a_10 < L · b_10 ; a_11 < L · b_11 ; a_12 < L · b_12 ; ...; a_n < L · b_n; Sum a_n
@AryaDhayal
@AryaDhayal 8 жыл бұрын
thankyou :)
@microhoarray
@microhoarray 2 жыл бұрын
lot of teachers just gives you the textbook proof and read it out loud while thinking that they're explaining the stuff. reading out loud is not an explanation, but this is! that you for showing it it visually and not mentioning the damn epsilon-delta definition.
@slcmathpc
@slcmathpc 2 жыл бұрын
I agree with your sentiment. Although absolute rigor is eventually important, it should definitely come second after developing a solid intuition, which is far more important. Keep up the quest for true understanding! :-)
@riley4051
@riley4051 4 жыл бұрын
Thanks for this proof and I also wanted to note: I think you could evade the for n>N because you could set the interval between two points that (A subn)/(bsubn) never gets to which could be some negative value (A) and some positive real number (B) which would still yield accuracy to the proof.
@slcmathpc
@slcmathpc 4 жыл бұрын
No. It is absolutely necessary that the interval around the limit value k>0 containing a_n/b_n for n > N has positive endpoints otherwise the direct comparison does not apply when Sum b_n diverges and so the proof breaks down. This can only be guaranteed by taking N sufficiently large.
@superoxidedismutase5757
@superoxidedismutase5757 8 жыл бұрын
perfect explanation
@riley4051
@riley4051 4 жыл бұрын
question: why can't you sum from n=1 to infinity instead of n = (big N) to infinity? I understand that we have confined Asub n/B sub n to whatever interval a to b, but I don't think it would affect the statement's validity to sum from n=1 to infinity of both sides.
@Rahul-bq6xl
@Rahul-bq6xl 6 жыл бұрын
Thanx It cleared my concept very well Keep up the good work
@lorenzoortiz8966
@lorenzoortiz8966 7 жыл бұрын
thank you so much!!! you are a great teacher, i wish more PAID teachers had the will to teach that youtubers have. it's a shame because these bastards get paid to teach. i've had nothing but teachers that don't really like to teach mathematiccs. they're like, OK MAGGITS,, memorize this formula, plug , chug, and move on. mathematics is fun and interesting if you understand the inner workings.. otherwise it's nothing but self torture
@kjlive781
@kjlive781 4 жыл бұрын
Thank you
@BL-om2hn
@BL-om2hn 7 жыл бұрын
ur amazing love you
@Imazine1104
@Imazine1104 5 жыл бұрын
Well explained!!
@keithlyons8931
@keithlyons8931 10 жыл бұрын
Well done!
@michelazar1997
@michelazar1997 9 жыл бұрын
u r amezing
@aakarshikasingh4715
@aakarshikasingh4715 5 жыл бұрын
You have mentioned that sigma an is bounded and so convergent. But this is not always true. A sequence needs to be monotone as well as bounded to be convergent.
@slcmathpc
@slcmathpc 5 жыл бұрын
Since a_n >0, then the sequence of partial sums is increasing.
@nsq2487
@nsq2487 3 жыл бұрын
Can an and bn be negative? Will this test still work?
@slcmathpc
@slcmathpc 3 жыл бұрын
a_n and b_n must be eventually positive, since the test relies on the Direct Comparison Test.
@santosshresth4419
@santosshresth4419 5 жыл бұрын
thank u sir greatly helpful
@naif277
@naif277 6 жыл бұрын
My issue with this proof is that you assumed that the value ot the limit can get bigger than k which is impossible! Because k is the limit when n approach infinity. I know this video is old but can you please clarify this to me
@slcmathpc
@slcmathpc 6 жыл бұрын
You are confusing the individual terms of the sequence with the limit of the sequence. Consider the following two examples: 1+1/n > 1 for any n>0 and 1+1/n approaches 1 as n tends to infinity. 1-1/n < 1 for any n>0 and 1-1/n approaches 1 as n tends to infinity.
@nasi5813
@nasi5813 5 жыл бұрын
I still dont get it fml
@slcmathpc
@slcmathpc 4 жыл бұрын
Keep at it, we've all been there!
@michelazar1997
@michelazar1997 9 жыл бұрын
i lav u
@michelazar1997
@michelazar1997 9 жыл бұрын
+Michel Azar i lav u too
@michelazar1997
@michelazar1997 9 жыл бұрын
+Michel Azar me too
@sashalo1194
@sashalo1194 4 жыл бұрын
@@michelazar1997 Wow this was a very odd but wholesome set of three comments. Welcome to the internet friends.
The Limit Comparison Test - Example 1
8:49
slcmath@pc
Рет қаралды 1,7 М.
The Integral Test - Proof
20:06
slcmath@pc
Рет қаралды 19 М.
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Limit Comparison Test Proof
11:23
Dr Peyam
Рет қаралды 7 М.
P-Series - Proof
15:16
slcmath@pc
Рет қаралды 39 М.
Proof of the Limit Comparison Test
6:36
Linda Green
Рет қаралды 5 М.
Alternating Series Test - Proof
19:06
slcmath@pc
Рет қаралды 10 М.
Limit Comparison Test
11:12
The Organic Chemistry Tutor
Рет қаралды 800 М.
Proving a Sequence Converges with the Formal Definition Advanced Calculus
7:57
Conceptual Proof Of Limit Comparison Test |Infinite Series| |Formula Foundation|
19:16
Comparison Test Proof
9:23
Dr Peyam
Рет қаралды 8 М.
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН