Solve for x in the floor function equation

  Рет қаралды 5,669

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 17
@Gremriel
@Gremriel 8 ай бұрын
I watched this, and understood nothing. But I keep watching these videos, for some unfathomable reason.
@learntnew6969
@learntnew6969 8 ай бұрын
same man.
@AdrianHernandez-ul4in
@AdrianHernandez-ul4in 8 ай бұрын
his calming voice?
@surendrakverma555
@surendrakverma555 8 ай бұрын
Very good explanation Sir. Thanks 🙏
@JonibekSharipov-pz6ez
@JonibekSharipov-pz6ez 4 ай бұрын
Wow cool Thanks a lot from Uzbekistan
@NulliosG
@NulliosG 8 ай бұрын
Very interesting. Extrapolating from this logic, would brackets with lines missing on the bottom signify a ‘ceiling’ function with the left operator being ‘less than’ and the right operator being ‘less than or equal to’ in the drawn-out equation? Or would the operators be flipped to ‘greater…?’ I wonder. Apologies if this is answered in the video, I can only watch it muted.
@PrimeNewtons
@PrimeNewtons 8 ай бұрын
It will be k-1 < x
@m.h.6470
@m.h.6470 8 ай бұрын
Solution: (15x - 7)/5 = ⌊(6x + 5)/8⌋ Add d with 0 ≤ d < 1 to the left side to remove floor on the right: (15x - 7)/5 + d = (6x + 5)/8 |*40 120x - 56 + 40d = 30x + 25 |-30x +56 -40d 90x = 81 - 40d |:90 x = (81 - 40d)/90 Replacing d with 0 to get first boundary: x = (81 - 40d * 0)/90 x = 81/90 Replacing d with 1 to get second boundary (not included): x = (81 - 40 * 1)/90 x = 41/90 So we know that 41/90 < x ≤ 81/90. Since the right side of the original equation is always integer, we need to see, when the left side is integer. Using the known boundaries, we get: (15 * 41/90 - 7)/5 = (41/6 - 42/6)/5 = -1/30 and: (15 * 81/90 - 7)/5 = (81/6 - 42/6)/5 = 39/30 The only integers between -1/30 and 39/30 are 0 and 1 (15x₁ - 7)/5 = 0 |*5 15x₁ - 7 = 0 |+7 15x₁ = 7 |:15 x₁ = 7/15 (15x₂ - 7)/5 = 1 |*5 15x₂ - 7 = 5 |+7 15x₂ = 12 |:15 x₂ = 12/15 = 4/5 x ∈ {7/15, 4/5}
@BartBuzz
@BartBuzz 8 ай бұрын
You do love your floor functions 😊
@joaobatistaoliveira4007
@joaobatistaoliveira4007 7 ай бұрын
Linda solução, Senhor.
@ronaldreagan3538
@ronaldreagan3538 3 ай бұрын
You said (6x+5)/8 is "less than its own ceiling, ... k+1". If (6x+1)/8 is a whole #, both floor & ceiling will be = k. Inequality you wrote is fine, wording is not perfect. Thanks for the videos.
@gbshaun
@gbshaun 8 ай бұрын
I jumped to the end, but why is the answer not simply X=0.9 ?
@Gman6365
@Gman6365 2 ай бұрын
Because he is not solving (15x-7)/5 = (6x+5)/8 Look at the right side of the equation. The (6x+5)/8 is between what looks a bit like an "L" and a backwards "L". This indicates the floor function is being used. Applying the floor function to an integer returns that integer; however, applying it to a non-integer returns the largest integer less than the original number. [So, it rounds down to the next integer.] Examples: floor(9)=9, floor(8.999)=8, floor(8.001)=8 Setting x=0.9, the left side is 1.3 while the right side is floor(10.4/8)=floor(1.3)=1
@AndDiracisHisProphet
@AndDiracisHisProphet 8 ай бұрын
you should have checked yourself :D k = 15x MINUS 7 over 5, not plus....
@dirklutz2818
@dirklutz2818 8 ай бұрын
NO!
@dirklutz2818
@dirklutz2818 8 ай бұрын
I found the solution through trial and error. But now I know why!
0! = 1! = 1
5:47
Prime Newtons
Рет қаралды 9 М.
Floor equation
12:31
Prime Newtons
Рет қаралды 62 М.
Solving a Floor within Floor Equation
8:26
SyberMath
Рет қаралды 13 М.
Limit of Floor Function of 6x-x^2 | Many People Got this Wrong!
8:44
Glass of Numbers
Рет қаралды 4,3 М.
A quadratic floor equation.
13:27
Michael Penn
Рет қаралды 51 М.
Euler's number as a limit - How to compute it
9:39
TheCalcSeries
Рет қаралды 30 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 758 М.
Ceiling over floor plus 2x = 8
14:26
Prime Newtons
Рет қаралды 9 М.
How to Solve Palindrome Equations
13:01
Prime Newtons
Рет қаралды 16 М.
The ceiling of a floor and the floor of a ceiling equation
8:44
Prime Newtons
Рет қаралды 5 М.
A system of equations with the floor function.
12:32
Michael Penn
Рет қаралды 66 М.