solving a logarithmic equation with different bases

  Рет қаралды 261,995

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 416
@raphberry
@raphberry 5 жыл бұрын
Could you just have done: ln(x) + 2 ln(x) = 12 ln(2) 3 ln(x) = 12 ln(2) ln(x) = 4 ln(2) = ln(2^4) = ln(16) x = 16
@vitakyo982
@vitakyo982 5 жыл бұрын
Too simple is not chinese ...
@bitterberry_
@bitterberry_ 5 жыл бұрын
Even don't need ln log2 x + log4 x = 3log4 x = 6 log4 x = 2 x = 16
@harshvirgrewal2403
@harshvirgrewal2403 5 жыл бұрын
That’s what I was thinking, just add the ln(x)’s and then divide both sides and it’s simple from there
@BigDBrian
@BigDBrian 5 жыл бұрын
@@bitterberry_ This particular example works out nicely like that due to the bases being 2 and 4. But I think the point is to show a more general method
@rosebuster
@rosebuster 5 жыл бұрын
@@BigDBrian You should always use the simplest approach for the task at hand!
@perlnut
@perlnut 5 жыл бұрын
Why not recognize 4 is 2^2 and change log4(x) to log2(x)/log2(4) and continue from there? Much simpler.
@rosebuster
@rosebuster 5 жыл бұрын
Yeah, I also think it makes more sense to be a little bit more picky choosing the log base when you can choose any base you want. Better think what is the simplest one to use instead of sticking to natural logarithm just because it's the one you're most used to. I always say it's better to think a little instead of following formulas mechanically. And personally I favour base 2 logarithms anyway, because they're the ones you'll find most commonly in computer science. :)
@morksan9973
@morksan9973 2 жыл бұрын
Mathmaticians never seek for easy way
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
Or just use that property when power of base goes in denominator 🙂
@nemanjalazarevic9249
@nemanjalazarevic9249 2 жыл бұрын
Theres also the short cut formula of: Log x^n(y)=Logx(y)/n
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
@@nemanjalazarevic9249 yes, it is a basic log property
@donati880
@donati880 5 жыл бұрын
Why not : 1/2log2X+log2X=6 3log2X=12 log2X=4 X=2^4 X=16
@NasirKhan-lq5jl
@NasirKhan-lq5jl 5 жыл бұрын
Exactly what I did in my mind when I saw the thumbnail.
@ivansavchuk7956
@ivansavchuk7956 5 жыл бұрын
+)
@NTENewTechnologicalEducation
@NTENewTechnologicalEducation 5 жыл бұрын
donati880, that is also correct.
@Viesto1980
@Viesto1980 5 жыл бұрын
Exactly,
@aman-kr
@aman-kr 5 жыл бұрын
Yes this is very easy and simple method.
@animalfarm7467
@animalfarm7467 5 жыл бұрын
Just a thought - If you use a base change to "2" instead of "e", you rapidly get to (log2(x))/(log2(4)) + log2(x)=6; 3/2*log2(x)=6 or log2(x)=4, hence x=2^4
@johngreen3543
@johngreen3543 3 жыл бұрын
You have the "best" way to do it
@xtree2817
@xtree2817 3 жыл бұрын
Love ya
@cipherbenchmarks
@cipherbenchmarks 2 жыл бұрын
Where u get 3/2
@animalfarm7467
@animalfarm7467 2 жыл бұрын
@@cipherbenchmarks : Factor out the log2(x)) from (log2(x))/(log2(4)) + log2(x) (log2(x))(1/(log2(4)) + 1) and as log2(4)=2, (log2(x))(1/2 + 1)=(3/2)log2(x) Hope that helps.
@manka5464
@manka5464 2 жыл бұрын
@@animalfarm7467 I appreciate you responded after three years and yes, it helped
@kujmous
@kujmous 5 жыл бұрын
I like this video especially because I can see the answer beforehand. I did it differently, but it uses the same reasoning. LOG4(x) + LOG2(x) = 6 LOG4(x) + 2(LOG4(x)) = 6 3LOG4(x) = 6 LOG4(x) = 2 x = 4² = 16
@AndreasChristianto
@AndreasChristianto 5 жыл бұрын
i prefer: ln x + 2 ln x = 12 ln 2 3 ln x = 12 ln 2 ln x = 4 ln 2 ln (x) = ln (2^4) x = 2^4 x = 16
@hollow6079
@hollow6079 5 жыл бұрын
same here, just think it's unnecessary to bring the 2 into ln x
@flamingpaper7751
@flamingpaper7751 5 жыл бұрын
You can do that last step a little easier. When you have ln(x) + 2ln(x) = 12ln(2) You can simply add the ln(x) on the left since ln(x) acts like a variable and get 3ln(x) = 12ln(2) Then divide both sides by 3 to get ln(x) = 4ln(2) Then put the 4 into the ln(2) to get ln(x) = ln(2^4) Then x = 2^4, which is obviously 16
@yashjakhmola
@yashjakhmola 5 жыл бұрын
Not bragging, but this was too easy. I literally solved it in my head just looking at the thumbnail. Your videos are awesome tho.
@SHASHANKRUSTAGII
@SHASHANKRUSTAGII 5 жыл бұрын
Same
@ridditdit2686
@ridditdit2686 5 жыл бұрын
It's still really cool math so I don't mind
@shacharh5470
@shacharh5470 5 жыл бұрын
Same
@sangeetanarendrasingh5416
@sangeetanarendrasingh5416 5 жыл бұрын
Yeah, same
@SartajKhan-jg3nz
@SartajKhan-jg3nz 5 жыл бұрын
Easy for us in higher grades. Consider the people who are not familiar to the concepts of logarithms🙃
@lostwizard
@lostwizard 5 жыл бұрын
As others have noted, observing that the bases are both powers of 2 suggests that the best base to change to would be 2. That then means the denominators in the change of base become nice integers and the result then trivially simplifies to log2(x) = 4. Of course, your way works more generically and shows off more log properties.
@orisphera
@orisphera 3 жыл бұрын
I think base 4 would be even better here
@HeyKevinYT
@HeyKevinYT 5 жыл бұрын
ln x and 2 ln x are like terms
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Kevin vs. Gamingz yup! It was 10:30pm when I recorded this..
@suniltshegaonkar7809
@suniltshegaonkar7809 4 жыл бұрын
Also that we can convert Log X_4 = 1/2 of Log X_2. So both terms are at Base 2, taking common the Log portion). 3/2* LogX_2 = 6 >>> X^3/2 = 2^6 >>> X= 16.
@fr0si834
@fr0si834 3 жыл бұрын
I did the same thing , is it a right way to solve logarithmic equations that can be converting to be the same bases ??
@not_vinkami
@not_vinkami 5 жыл бұрын
Maybe it's time for us to make it *COMPLEX*
@denismilic1878
@denismilic1878 5 жыл бұрын
I rarely can solve math problems on this channel in my head, or even solve without pain but this problem is super simple or I got some wierd inspiration. Answer just poped in my head Sheldon style. log4(x)+log2(x)=6 log2(sqrt(x))+log2(x)=2 +4 log2(sqrt(x)) = 2 and log2(x)=4 x= 2^4 = 16
@chyawanprash
@chyawanprash 4 жыл бұрын
I did it like this. Let y=log4 (x) Let z=log2 (x) y+z=6 4^y=x 2^2y=x 2^z=x 2^2y=2^z 2y=z y+2y=6 3y=6 y=2 log4 x = 2 x=4² x=16
@pdisp
@pdisp 3 жыл бұрын
Nice.
@thomasg6830
@thomasg6830 5 жыл бұрын
ln(x) + 2×ln(x) = 3×ln(x)
@NeedBetterLoginName
@NeedBetterLoginName 2 жыл бұрын
Around 3:30, you could just do ln(x) + 2ln(x) = 3 ln(x) and go from there, quicker and simplier
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
BlackPenRedPen : Takes 6 mins to solve the world's easiest log question Me : Solves it in literally 10 seconds in head
@blackpenredpen
@blackpenredpen 2 жыл бұрын
LITERALLY?
@tbg-brawlstars
@tbg-brawlstars 2 жыл бұрын
@@blackpenredpen According to google Literally definition : used for emphasizing something
@mulezichanje
@mulezichanje 10 ай бұрын
He's tutoring, you're not.
@solcraftdev
@solcraftdev 3 жыл бұрын
At 3:30 just simplify to 3ln(x)=12ln(2) and divide both sides by 3 to get ln(x)=4ln(2), simplify to get ln(x)=ln(16), cancel the 'ln's and you get x=16
@GirishManjunathMusic
@GirishManjunathMusic 2 жыл бұрын
Given: lq(x) + lb(x) = 6 Knowing lq(x) = ½lb(x); as lb(4) = 2: ½lb(x) + lb(x) = 6 Adding fractions: (3/2)·lb(x) = 6 Multiplying both sides by ⅔: lb(x) = 4 Exponentiating both sides using 2 as the base: x = 2⁴ x = 16. Here, lq(x) = log(x) with base 4, lb(x) = log(x) with base 2.
@kidtherookie6019
@kidtherookie6019 5 жыл бұрын
I found another way! Note: 2*log_4(x)=log_2(x) log_2(x)+2*log_2(x)=12 log_2(x^3)=12 x=2^(12/3)=16
@ib9rt
@ib9rt 5 жыл бұрын
At 3:18 I was so stunned about what you did next that I had to check the calendar to make sure it wan't April 1st...
@Shreyas_Jaiswal
@Shreyas_Jaiswal 3 жыл бұрын
Haha, it could be written just 3ln(x).
@hailmary7283
@hailmary7283 5 жыл бұрын
Instead of doing ln(x)/ ln(4), why not just do log2(x)/log2(4)? Then you get log2(x)/2 + log2(x) = 6. Then we have (3/2)log2(x) = 6 log2(x) = 4 x = 16 This just seems a lot easier. Love the videos.
@boldandbrash2499
@boldandbrash2499 4 жыл бұрын
I have just applied 2 to base of logarithm and saw that (log2^x/2) + (log2^x/1) = 6 And then i have multipled second term by 2 then saw that (log2^x/2) + (2log2^x/2) = 6 this turned into 3log2^x/2 = 6 and did the equation which turned into log2^x = 4 and simply found the x equals to 16. I have watched so much of your videos. And w/o you i couldn't be able to find out the answer. All thanks to you
@adrianfrauca8118
@adrianfrauca8118 4 жыл бұрын
3:25 alternatively, lnx + 2lnx = 12ln2 => 3lnx = 12ln2 => lnx = 4ln2 => x = e^(ln2*4) => x = 2^4 => x = 16
@londonalicante
@londonalicante Жыл бұрын
Everybody else saying there's a simpler way. My issue was that there was an unnecessary JAZZ PIANO playing.
@itscalledatilda
@itscalledatilda 4 ай бұрын
*classical piano
@londonalicante
@londonalicante 4 ай бұрын
@@itscalledatilda There is indeed classical piano in the first 23 seconds. I think I skipped that last time. I was talking about the piano from 4:00 onwards, which I assumed he added deliberately. Looks like he was just next to a music room. Interesting that this problem uses 2^12, given the importance of 2^(1/12) in music (it's the frequency ratio of 2 notes a semitone apart.)
@RobbeDeneef-p4z
@RobbeDeneef-p4z 9 күн бұрын
I love this video, you explain it much better than my teacher!
@abhirampaku6070
@abhirampaku6070 2 жыл бұрын
Easier method, log_4⁡x + log_2⁡〖x 〗=6 log_(bxb…..ntimes)⁡〖a 〗=1/n( log_b⁡a ) 〖1/2 log〗_2⁡x + log_2⁡x =6 3/2 log_2⁡x =6 Dividing and multiplying both sides with 3 and 2 respectively log_2⁡〖x 〗= 4 log_b⁡a=x then a=b^x Therefore, x=2^4 =16
@MostafaAhmed-kn4yy
@MostafaAhmed-kn4yy 5 жыл бұрын
another solution : Suppose that log4(x) = y If 4 ^ y = x - - or 2 ^ 2y = x We take log2 (x) in the last relationship If 2y = log2 (x) then we substitute the original equation to find y y = 2 After compensation, we find the value x x = 16
@millicentatieno8854
@millicentatieno8854 4 ай бұрын
surely i had a problem in solving that,thanks dude
@masterclash9959
@masterclash9959 3 жыл бұрын
A “hidden” rule I found with logs is that if you have log_b(a), it will be equal to log_(b^2)(a^2) or alternatively 2log_(b^2)(a). This is because if you use your change in base formula and exponentiate the arguments to the same number, then you can use the power rule to take the exponents out of the argument and cancel, of which would leave you with another fraction to apply the change in base formula. Example: log_9(4) ln(4) --- ln(9) ln(2^2) --- ln(3^2) 2ln(2) --- 2ln(3) Simplify to ln(2) --- ln(3) And log_3(2) Hence, log_9(4) = log_3(2)
@mjones207
@mjones207 5 жыл бұрын
I think this is easier to use the change of base formula on just the first addend only using log(base 2). This gives log(base 2)x / 2 + log(base 2)x = 6 → (3/2) log(base 2)x = 6 → log(2)x = 4 → x = 2⁴ = 16.
@mathsplus01
@mathsplus01 2 жыл бұрын
I really enjoyed how you showed how easy to change the base. Great!
@suhleslie9010
@suhleslie9010 2 ай бұрын
Please which to ask about this expression in log if it right; Log_(log_a(b)) + log_(log_c(b)) = log c Log[log_a(b)][log_c(b)] = log c And taking natural log on both sides; Is it mathematically correct in logs ?
@elektriksvarsiki
@elektriksvarsiki 5 жыл бұрын
Log2(x)=2log4(x) so, 3log4(x)=6 Log4(x)=2 By definition,x=16
@ffggddss
@ffggddss 5 жыл бұрын
log₄x + log₂x = 6 Well, because 4 = 2², we can write log₂x = 2·log₄x And then we have log₄x + log₂x = 3·log₄x = 6 log₄x = 2 x = 4² = 16 Note that the exponent, 2, in 4 = 2² is the log base 2 of 4: log₂4 = 2. So in more general cases, when there are logs of more than one base, they can all be converted to a common base, using logᵤx = logᵤv · logᵥx You can choose any base you want as the common base - whatever works best. Now to watch Mr. Pen, to see how he does this . . . Ooh, yes that's the right answer, but sorry to have to say I don't think this is the best way to get there. Once you have: lnx + 2·lnx = 12·ln2 just combine the LHS to get: 3·lnx = 12·ln2 lnx = 4·ln2 x = 2⁴ = 16 Kudos for giving the change-of-base formula - that's a powerful tool in log problems! Fred
@jinishtrivedi2429
@jinishtrivedi2429 5 жыл бұрын
Sir you could directly write.. Log[4]x=(1/2)log[2] HERE I USED SQUARE BRACKETS [. ] TO DENOTE THE BASE OF THAT LOG This could become more easy
@tobiaschapinda6771
@tobiaschapinda6771 3 жыл бұрын
Logarithmically Transform the function y=(〖(3x^2+2)〗^2 √(6x+2))/(x^3+1)
@wes9627
@wes9627 Жыл бұрын
To avoid confusion I would just solve log(x)(1/log4 + 1/log2) = 6 for log(x) and then set x = 10^log(x) = 16, where log is to base 10.
@oldravianspublicschool7437
@oldravianspublicschool7437 3 жыл бұрын
Good example for understanding the logarithms' law of change of base
@yasharora3797
@yasharora3797 5 жыл бұрын
You can use the property where log x to the base b^n is equal to 1/n times log x to the base b.
@tombombadil1351
@tombombadil1351 4 жыл бұрын
name of that property?
@Tomaplen
@Tomaplen 5 жыл бұрын
What is log_i(i!¡) ?? (Logarithm with base i of i-th tetration of i subfactorial
@YosefTesfay
@YosefTesfay Жыл бұрын
I think this method is also possible! Log 4 (x) + Log 2 (x)= 6 (Log 2 (x))/ Log 2 (4) + Log 2 (x) = 6 Let t = Log 2 (x) t/ Log 2 (4) + t = 6 t/ 2 + t = 6 3t/2 = 6 t= 4 Log 2 (x)= 4 x = 2^4 x= 16
@BigDBrian
@BigDBrian 5 жыл бұрын
when you got lnX + 2lnX = 12ln2 you should just add the lefthand side, then divide everything by 3. So you'll get to lnX = 4ln2 = ln16 a lot faster and don't have to take the cube root which creates extraneous solutions
@mosesmwata7613
@mosesmwata7613 2 жыл бұрын
Correct but there’s still a simpler way to solve it log2 (x^0.5) + log2 (x) =6 log2 (x^1.5) = 6, we know log2 (2) =1 Let introduce log2 in the second member log2 (x^3/2) = 6log2 (2), (we know 3/2 = 1.5) Let’s write 6log2 (2) in the form of exponential log2 (x^3/2) = log2 (2^6) Then the log2 canceled out X^1.5 = 2^6 X= 2^6/1.5 X= 2^4 X= 16
@joeyde1981
@joeyde1981 2 жыл бұрын
It’s crazy how many math problems I do and I remember doing hundreds of these just months ago and I never retain the rules
@MrConverse
@MrConverse 5 жыл бұрын
Why not add ln(x)and 2ln(x) to get 3ln(x) then divide both sides by 3? Much simpler than the route to the solution shown in the video (IMO).
@ChaineYTXF
@ChaineYTXF 5 жыл бұрын
I agree, but it has the advantage of showing more rules on logarithms
@Wyldina
@Wyldina 5 жыл бұрын
Remember he teaches stuff.. He wanna use as many different methods he can, without confusing people :>
@MrConverse
@MrConverse 5 жыл бұрын
I agree, Delta & Rune, that he probably did it the way he did to include more log laws. But I think taking the simpler route here would have been better. Those other rules could have been shown in another problem (or video). ;-)
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Thad Spreg Honestly... I totally forgot about it. It was 10:30pm when I recorded this at school after 5 hours of teaching...
@MrConverse
@MrConverse 5 жыл бұрын
blackpenredpen you work very hard. We appreciate all your efforts!
@ΑΝΤΩΝΗΣΠΑΠΑΔΟΠΟΥΛΟΣ-ρ4τ
@ΑΝΤΩΝΗΣΠΑΠΑΔΟΠΟΥΛΟΣ-ρ4τ 2 жыл бұрын
you can either apply change of base law with ln or log_2, OR you can do the other way. log_4(x)+log_2(x)=6 (1) (1) --> log_4(x) = 6-log_2(x) let f(x) be log_4(x) and g(x) be 6-log_2(x) f is constantly increasing while g is constantly decreasing, thus there can be only one solution. By inspection, x=16 is a solution, therefore, 16 is the only solution **P.S. you could let f(x) = log_4(x)+log_2(x) and g(x) = 6 and stick to the same method, you will see that f is constantly increasing while g is a constant function, thus there can only be one intersection point at the most.
@rafikhan908
@rafikhan908 5 жыл бұрын
Another option: 3lnx = 12ln2 ; divide by 3; rewrite RHS as ln2^4 and then antilog...etc.
@terapode
@terapode 5 жыл бұрын
You are a very good teacher.
@shizeli1702
@shizeli1702 2 жыл бұрын
you just need to know: log4(x)=1/2*log2(x)
@abu-karz
@abu-karz 2 жыл бұрын
So perfect so beautiful i can't believe it. Never seen something so cool in maths with such hard functions like this.
@ericventalon6113
@ericventalon6113 5 жыл бұрын
in 4th line we can also write: ln x + 2 ln x = ln x (1 + 2) = 3 ln x = ln x ^ 3 I love this vidéo it s still good.
@beggibob6261
@beggibob6261 2 жыл бұрын
It took me 5 steps to finish this and i feel like he makes it complicated, i mean why don't you do like this for quicker? Step 1: we can turn the question into 1/2log2(x) + log2(x)=6 Step2: log2(x)(1/2+1)=6 Step3: 3/2 log2(x)=6 Step4: log2(x)=4 Step5: x=16. DONE!
@di-riso
@di-riso Жыл бұрын
You could also have taken log 2 getting log 2x +2logx=12 then log 2 x • x^2 so then log2 x^3 and then proceed the same way
@kirbo722
@kirbo722 2 жыл бұрын
One of my favorite bprp videos♥️
@MrRyanroberson1
@MrRyanroberson1 5 жыл бұрын
here's how i solve it: 4_x means log base 4 of x, so we have the identity 4_x = 1/x_4 = 1/2 x_2 = 2_x /2 so 4_x + 2_x = 3/2 of 2_x = 6, we get 2_x = 4, x=16
@nvapisces7011
@nvapisces7011 5 жыл бұрын
This one was easy. Could also use substitution to simplify things even further after change of base
@makhloufbenmehiris9559
@makhloufbenmehiris9559 5 жыл бұрын
You are the best professor in life Thank you
@alihasani648
@alihasani648 2 жыл бұрын
These videos are the only revision I do
@TheSandkastenverbot
@TheSandkastenverbot 2 жыл бұрын
I just went by the definition of the logarithm: 4^2 =16 = 2^4. So if x=16 then log_4(x)=2 and log_2(x)=4. The sum is 6. This, of course, worked only because x is an integer and the logarithms as well.
@mallythepassmaster6265
@mallythepassmaster6265 8 ай бұрын
Simple method here the easiest....log 2^2^x+ log 2^x=6 1/2 log 2^x + log 2^x =6 Let log 2^x be k 1/2 k+ k =6 3/2k =6 k=4 But log 2^x =k which 4 Log 2 ^x=4 2^4=x X=16 Simplest way and easiest
@vhmix379
@vhmix379 2 жыл бұрын
log(x)/2log2 + logx/log2 = 3logx/2log2 = 6, 3logx =12log2, logx/4log2=1 , logbase16(X)=1 so that means x =16
@generaldarian1263
@generaldarian1263 3 жыл бұрын
Another way I found to solve this: From lnx/2ln2 + lnx/ln2 = 6 Factor out (lnx/ln2): (lnx/ln2)(1/2 + 1) = 6 (lnx/ln2)(1.5) = 6 lnx/ln2 = 4 lnx = 4ln2 x = 2^4 = 16
@tobiaschapinda6771
@tobiaschapinda6771 3 жыл бұрын
Given that log_a ⁡p=0.7and log_a ⁡q=2, find log_a⁡〖p^2 〗, log_a⁡〖p^2 〗 q and log_a⁡ (apq)
@bearme1160
@bearme1160 2 жыл бұрын
Just notice log4 is always a half of log2 and it can be rewritten as log4+2log4=6 which then can be written as 3log4=6-> log4x=2 x=4 to the power of 2=16
@onelastmanstanding
@onelastmanstanding Жыл бұрын
YOU ARE STILL SAVING LIFES
@lionbryce10101
@lionbryce10101 5 жыл бұрын
Wow, I'm seeing a lot of different ways to solve this. Let me throw my 2 cents in (btw, if you do it this way, you'll lose points on most exam) See both are powers of 2 Try 8 as an input, see that it's short Try 16, it worked.
@mcwulf25
@mcwulf25 5 жыл бұрын
Easier to keep the coefficients outside of the ln. 3lnx = 12ln2 then x=2^4.
@dkiproch
@dkiproch 4 жыл бұрын
At second step if you just set the equation as log2(x)/log2(4) + log2(x)/log2(2) = 6 It would be much easier since log2(4)=2 and log2(2)=1
@AaronWGaming
@AaronWGaming 2 жыл бұрын
TBH I knew it was 16 without doing all the math... But I did it more by converting it back to Exponents... 4^y=x and 2^z=x Y+Z=6 From there 4^y=2^z Bring up a power to make it base 2 2^2Y=2^Z... 2y=z and Y+Z=6 from there 3Y=6 Y has to be 2 and Z 4 from there plug in to get X=16
@Catishcat
@Catishcat 4 жыл бұрын
but log(a^x)(b^y) = (y/x)log(b) so you could like log(4)(x) + log(2)(x) = 6 0.5log(2)(x) + log(2)(x) = 6 1.5log(2)(x) = 6 log(2)(x) = 4 x = 2^4
@shreyanssharma5280
@shreyanssharma5280 3 жыл бұрын
Just have log2(x) as "t" and then t+t/2 = 6 which gives t= 4 so log2(x) = 4 or X= 16.
@minhaj283
@minhaj283 5 жыл бұрын
log_4(x) = y ---> x = 4^y = 2^(2y) Hence log_4(x) + log_2(x) = y+2y = 6 Hence y=2 and so x = 4^2 = 16 :D my way of doing it
@ricardovillanueva6519
@ricardovillanueva6519 2 жыл бұрын
Dear Jenna Grace, log[(4x)(2x)]=6. Now this: log(8x^2) = 6, a base 10 logarithm. Change it to exponential 8x^2=10^6 ; x=sqrt of 10^6/8
@viktyusk
@viktyusk 4 жыл бұрын
You chose the most complicated way to solve this.
@cyberguardreal
@cyberguardreal 2 жыл бұрын
I'm quite new to logs but realised that log_x(y) is the same as log_(x^n)(y^n) so you can rewrite log_4(x) as log_2(x^1/2) and proceed to solve log_2(x * sqrt/x) =6
@manuelgonzales2570
@manuelgonzales2570 2 жыл бұрын
Very good exercise. Thank you!
@roderickwhitehead
@roderickwhitehead 5 жыл бұрын
I woulda just combined the terms on the left to 3*ln(x), then divided both sides by 3, yielding: ln(x)= 4*ln(2)
@i_am_anxious02
@i_am_anxious02 5 жыл бұрын
ln(x)+2ln(x)=12ln(2) 3ln(x)=12ln(2) ln(x)=4ln(2) ln(x)=ln(2^4) x=2^4 x=16 It’s mathematically the same, it just feels better doing it this way for me idk
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Here is a good one: can one use the Lambert W function along with all the other elementary functions we are acquainted with to solve an equation of the general form e^x = Ax^2 + Bx + C ? And if so, what is the general solution in terms of A, B, and C?
@ziasquared5753
@ziasquared5753 5 жыл бұрын
Not really a math question, but how do you write on a whiteboard using two pens? I kind of wanna see a close up lol.
@ffggddss
@ffggddss 5 жыл бұрын
Easy after a little tutelage in legerdemain. Manipulating multiple objects in one hand. Fred
@PedroHenrique-vs3mf
@PedroHenrique-vs3mf 8 ай бұрын
Incredible work
@Iamaayushmaurya
@Iamaayushmaurya 5 жыл бұрын
Please integrate tan inverse X whole upon 1 + x square to the whole power 3 by 2
@sergioh5515
@sergioh5515 5 жыл бұрын
I see that spiderman is a patron XD
@ja1212az
@ja1212az 2 жыл бұрын
Amazing work man
@themptytree3145
@themptytree3145 3 жыл бұрын
log4(x) = log(2^2)(x) = 1/2 log2(x) so 1/2 log2(x) + log2(x) = 6 3/2 log2(x) = 6 log2(x) = 4 x = 16
@brettstafford9665
@brettstafford9665 5 жыл бұрын
3:20 just make it 3lnx then divide by 3!
@nicholas92
@nicholas92 2 жыл бұрын
Solving in under a minute: Log 2^2 x = log 2 x / 2 Log2 x = a a + 2a = 12 a = 4 log 2 x = 4 log 2 2 log 2 x = log 2 16 X = 16
@MartinUToob
@MartinUToob 2 жыл бұрын
I really liked the conclusion. (That must make you feel real smart.)
@hata6290
@hata6290 2 жыл бұрын
Oh my god I figured out a bprp problem before he finished on a three year old video about algebra 2 LETS GOOOO
@tooba6290
@tooba6290 4 жыл бұрын
We could also resolve the first term into base 2 it's easier that way
@deyomash
@deyomash 11 ай бұрын
I recognized that since we have logs of 4 and 2 which can both be written as a number base 2 I let x = 2^m. Then you get m/2 + m = 6 or m = 4 so x=16 :P
@overlordprincekhan
@overlordprincekhan 4 жыл бұрын
You could take log base 2 instead of natural log. That would simplify more
@PracticeMakePerfectMuslim93
@PracticeMakePerfectMuslim93 Жыл бұрын
this shown step by step rather than shortcut 😊
@Fire_Axus
@Fire_Axus Ай бұрын
use an exponential substitution
@junaidislam4277
@junaidislam4277 5 жыл бұрын
How about solving a exponential equation with different base? Like this 2*5^x-7^x=1 I have tried for at least 2 hour but couldn't find the solution yet. If you help me find its solution please!
@HeavyArmoredMedic
@HeavyArmoredMedic 5 жыл бұрын
I'm high-schooler so i don't know if this is the right way for solving but here is my solution: hizliresim.com/oXd2rk I think there can be a mistake when we using the root because we find x=0 but root is 5^x it's equal to 1 :P
@JensenPlaysMC
@JensenPlaysMC 5 жыл бұрын
havent tried but you might need to use the lambert w function
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Jensen No, that is not sufficient. Equations of the form a^x + b^x = c cannot be solved in the general case analytically, not even using the W function you mentioned. You can only solve it if a = b or if c = 0 or if ab = 0 or if a = 1 or if b = 1. To visualize how this cannot be solved in the general case, all you must show is that this equation requires solving a pseudo-polynomial, which also cannot be done.
@JensenPlaysMC
@JensenPlaysMC 5 жыл бұрын
@@angelmendez-rivera351 Could you link me to somewhere where i can find more about what a pseudo polynomial is? i can only find computing pesudo polynomial runtime algorithms
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
Jensen Well, I used the term “pseudo-polynomial” a little differently. Notice that a^x = e^[ln(a) x] and b^x = e^[ln(b) x]. So a^x + b^x = e^[x ln(a)] + e^[x ln(b)] = [e^x]^[ln(a)] + [e^x]^[ln(b)] = c. Let y = e^x, so the equation is now y^ln(a) + y^ln(b) = c. I called it pseudo polynomial because it is similar to a polynomial equation, but it is different in that the powers are not from integer exponents, unlike true polynomials. But these equations cannot be solved analytically. Something so simple as y^ln(2) + y^2 = c cannot be solved without numerical approximation. Not even with W can we do anything about it.
@inankazanc2724
@inankazanc2724 5 жыл бұрын
So this equation contains 3 solutions,since x^3=2^12?
@angelmendez-rivera351
@angelmendez-rivera351 5 жыл бұрын
No, this equation is not a cubic equation, where are you getting the idea that this equation is a cubic equation? (3/2)log2(x) = 6 => log2(x) = 4 => x = 2^4 = 16. Turning it into a cubic is not only unnecessary, but it changes the equation itself, and therefore it’s solution set. You are not allowed to simply create irreversible functions in a manipulation.
@plplpop1
@plplpop1 3 жыл бұрын
Without using change of base formula: Raise to power of 4: 4^[log4(x)+log2(x)] = 4^6 -> 4^log4(x) * 4^log2(x) = 4^6 -> x * (2*2)^log2(x) = 4^6 -> x * 2^log2(x) * 2^log2(x) = 4^6 -> x * x * x = 4^6 -> x^3 = 4^6 -> x = 4^(6/3) -> x = 4^2 -> x = 16 :) (Of course though, in general the change of base is what will always work haha)
@wahyuadi35
@wahyuadi35 5 жыл бұрын
This logarithmic question is still so.. easy as cake.
@Harsh-cs5zn
@Harsh-cs5zn Жыл бұрын
2:55 here the lowest common denominator was ln2 and not 2ln2
Solving a Log Equation with Different Bases
8:47
SyberMath
Рет қаралды 74 М.
Logs Everything You Need to Know
20:27
Mario's Math Tutoring
Рет қаралды 459 М.
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 39 МЛН
路飞做的坏事被拆穿了 #路飞#海贼王
00:41
路飞与唐舞桐
Рет қаралды 26 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
logarithm with negative base and negative input
9:52
blackpenredpen
Рет қаралды 219 М.
Solving Exponential Equation with Different Bases
4:10
Mr H Tutoring
Рет қаралды 50 М.
Simplify the logarithms with different bases
4:18
Brian McLogan
Рет қаралды 32 М.
Change of Base, Logarithm
7:37
Jacob Sichamba Online Math
Рет қаралды 115 М.
A Log Equation With Different Bases
9:08
SyberMath
Рет қаралды 7 М.
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 173 М.
You probably haven't solved a quartic equation like this before!
12:59
Solving exponential equations with different bases
4:41
bprp math basics
Рет қаралды 42 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 39 МЛН