Solving a Radical Equation with Unlike Roots

  Рет қаралды 27,370

SyberMath

SyberMath

Күн бұрын

Пікірлер: 111
@maxbow-arrow5931
@maxbow-arrow5931 3 жыл бұрын
Nice solution, but the one mentioned at the start also works. After cubing both parts we get 2-x = 1 - 3sqrt(x-1) + 3(x-1) - (x-1)sqrt(x-1) Then we isolate the square roots and get (x+2)sqrt(x-1)=4x-4 Notice that the RHS is just 4(x-1), so after squaring we get (x+2)^2*(x-1)=16(x-1)^2 So once we move everything to the left, we see that (x-1) can be factored out, yielding (x-1)(x^2+4x+4 - 16x+16) = 0 Solving the quadratic gives x=2 and x=10, and the first bracket gives x=1
@SyberMath
@SyberMath 3 жыл бұрын
Wow! I thought it was going to be messier
@shmuelzehavi4940
@shmuelzehavi4940 3 жыл бұрын
Same way.
@agnibeshbasu3089
@agnibeshbasu3089 3 жыл бұрын
nice! bring more videos like this and olympiad problems.
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! I will bring you lots of interesting problems...😉
@x714n0____
@x714n0____ 3 жыл бұрын
Very nice! I never saw this kind of substitution... ✌🏻
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@usernamehere94
@usernamehere94 3 жыл бұрын
@@SyberMath Exactly! I was educated in the United States and I was never expose to such a substitution either. Thanks!
@osmanfb1
@osmanfb1 3 жыл бұрын
I just used u^3 - 2-x as a single substition. It worked out u + sqrt(2-u^3-1) = 1 sqrt(1-u^3)=1-u sqrt((1-u)(1+u+u^2)) = sqrt(1-u) sqrt(1-u) now u=1 is one solution. if u is not 1 then divide both sides by sqrt(1-u) sqrt(1+u+u^2) = sqrt(1-u) u(u+2)=0 u=0 and u=-2 are also solutions. In therms of x x=2 , x=10, and x=1 (corresponding to u=1, this is without introducing extra unknowns.
@elkincampos3804
@elkincampos3804 3 жыл бұрын
Note that 2-x=1-(x-1). Then put u=√(x-1).It follows that (1-u^2)^(1/3)+u=1. u-1=(u^2-1)^(1/3). Therefore u^2-1=(u+1)*(u-1)=(u-1)^3. Thus 0=(u-1)^3-(u+1)*(u-1)=(u-1)*(u^2-2*u+1-u-1)=(u-1)*(u)*(u-3). Thus u=0,u=1 or u=3 that is x=u^2+1=1, 2 or 10.
@jeromemalenfant6622
@jeromemalenfant6622 3 жыл бұрын
???? Simpler: Let y equal the first radical, (as he does). Then x=2-y^3 and the second term is sqrt(1-y^3), so sqrt(1-y^3) = 1-y. Square both sides, the 1 cancels out, and you get y^3 + y^2 -2y = 0. One solution is y=0, or x=2. Dividing by y you get the quadratic, y^2 + y -2 =0, with solutions y = 1 and -2, corresponding to x = 1 and 10. So the solutions are x= 1, 2, 10.
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@nerusfuho674
@nerusfuho674 3 жыл бұрын
This is really awesome, I like what the different radicals work together 👍
@SyberMath
@SyberMath 3 жыл бұрын
Glad you like it!
@misterdubity3073
@misterdubity3073 3 жыл бұрын
I used u=2-x to get rid of the cube root. Then w=sqrt(1-u). Same results for x in the end. My solution worked, but more messy and not as elegant.
@enalaxable
@enalaxable 3 жыл бұрын
Still I think substitution is a bit easier: u^3=2-x , gives u*(u^2+u-2) =0. and same results for u* in {-2,0,1}, thus x* in {10,2,1}. It's typical strategy to get rid the highest radical first.
@SyberMath
@SyberMath 3 жыл бұрын
I agree!
@ulrichkaiser3794
@ulrichkaiser3794 2 жыл бұрын
At 2:25 it is easier to add eq 2 and eq 3 , resulting in y^3 + z^2 = 1 ... Then, I replaced z^2 by (1-y)^2 and so on, resulting in y (y+2) (y-1) = 0 From y = { 0 , -2 , 1 } one can derive x = { 2 , 10, 1 }
@ulrichkaiser3794
@ulrichkaiser3794 2 жыл бұрын
Thank you very much ! 🥰🌻🍀
@AnthonySpinelli-fe4vn
@AnthonySpinelli-fe4vn 3 жыл бұрын
My method is as follows: move the cube root to the RHS and negate the inside of the radical (as the function is odd) and square both sides so as to simplify the LHS. And upon doing so, you can substitute x-2 for, say, a variable y (y = x - 2). With this equation (I’ll use rt to mean cube root) y=2rt(y)+rt(y^2). The next step isn’t real rigorous, but you can divide out the cube root of y (and keep more that y=0 was the lost solution) and solve a quadratic in terms of the cube root of y. This leaves the three answers as y = -1, 0 and 8, which give the x values of x = 1, 2, and 10.
@SyberMath
@SyberMath 3 жыл бұрын
That's cool!
@chhromms.8138
@chhromms.8138 3 жыл бұрын
easy to understand and great explanation. perfect
@SyberMath
@SyberMath 3 жыл бұрын
Glad you think so!
@mrphlip
@mrphlip 3 жыл бұрын
At the start, you say that just isolating the cube root and cubing both sides would get too messy, but it's not _that_ bad... You end up with: 2 - x = (1 - sqrt(x-1))³ 2 - x = 1 - 3sqrt(x-1) + 3(x-1) - (x-1)sqrt(x-1) We then want to isolate the square root: 2 - x = 3x - 2 - (x+2)sqrt(x-1) 4 - 4x = -(x+2)sqrt(x-1) 4(x-1)/(x+2) = sqrt(x-1) (noting we can safely divide by x+2 as x=-2 is not a solution) 16(x-1)²/(x+2)² = x - 1 x = 1 is clearly a solution, but we can cancel out the (x-1) to find other solutions 16(x-1)/(x+2)² = 1 16x - 16 = x² + 4x + 4 x² - 12x + 20 = 0 (x - 2)(x - 10) = 0 x = 2 or 10 Since we squared both sides we need to test the solutions in the original equation, but all three fit as shown in the video.
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath WOW. WOW
@davidseed2939
@davidseed2939 3 жыл бұрын
At about 2:00 you say write everything in terms of x. But that's not what you want and thats not what you do. We had everything in terms of x. What you effectively do is to eliminate x. Adding the last two equations gives y^3 +z^2 = 1 Then you substitute y=(1-z) . Now we have everything in terms of z which nicely cancels. If we had written the equation in terms of y. It would also work. y^3+ (1‐y)^2 =1 y^3 +(y^2 -2y+1) =1 y(y^2 +y -2)=0 y(y-1)(y+2)=0 solutions at y=0,1,-2 X =1,2 ,10
@SyberMath
@SyberMath 3 жыл бұрын
You're right!
@theafs4547
@theafs4547 3 жыл бұрын
Good solution
@SyberMath
@SyberMath 3 жыл бұрын
Thank you, Mr. Einstein! 😁
@indrjeetkumar1030
@indrjeetkumar1030 3 жыл бұрын
Love your work 🔥
@SyberMath
@SyberMath 3 жыл бұрын
Thanks 🔥
@tharanathakula3588
@tharanathakula3588 3 жыл бұрын
Excellent.
@SyberMath
@SyberMath 3 жыл бұрын
Many thanks!
@Deepak0Aggarwal
@Deepak0Aggarwal 3 жыл бұрын
Substitute is his favourite method
@jonyp1320
@jonyp1320 3 жыл бұрын
nice ! learned something
@SyberMath
@SyberMath 3 жыл бұрын
Glad to hear that!
@aliasgharheidaritabar9128
@aliasgharheidaritabar9128 3 жыл бұрын
Wonderful.you keep me busy with your videos.
@SyberMath
@SyberMath 3 жыл бұрын
Glad you like them!
@quajutsu9372
@quajutsu9372 3 жыл бұрын
Wherever I see a Math channel I just click on Subscribe, as long as I respect its owner like you
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! I appreciate that!
@victorsaldiviacardoch8797
@victorsaldiviacardoch8797 3 жыл бұрын
I need you to make an infinite amount of this videos
@SyberMath
@SyberMath 3 жыл бұрын
I love them, too but I only have a finite number of these! 😁
@christinayu9598
@christinayu9598 3 жыл бұрын
Thanks
@SyberMath
@SyberMath 3 жыл бұрын
No problem
@neuralwarp
@neuralwarp 3 жыл бұрын
Very nice!
@SyberMath
@SyberMath 3 жыл бұрын
Thanks for the visit
@carloshuertas4734
@carloshuertas4734 3 жыл бұрын
Very good math problem. I got x=1. I thought it was the only solution.
@DatBoi_TheGudBIAS
@DatBoi_TheGudBIAS 2 жыл бұрын
I just looked at the thumbnail and 1 came to my head lol
@paramjotsingh4682
@paramjotsingh4682 3 жыл бұрын
Can you bring up a problem on numbers of bases less than 10, in the upcoming videos? It will be great if you do so.
@SyberMath
@SyberMath 3 жыл бұрын
Good idea!
@paramjotsingh4682
@paramjotsingh4682 3 жыл бұрын
Thanks. So, please do consider that as well.
@snejpu2508
@snejpu2508 3 жыл бұрын
I didn't like the cube root, which demands raising everything to the 6th power. So I made a strange substitution: 2-x=y^3. Now the cube root becomes just y and x-1=1-y^3. So, when I had to deal only with a square root, I squared everything and after some easy manipulations I received 3 solutions for y: 0, 1 and -2. 2-x=y^3, so x=2-y^3. So the solutions for y are 2, 1 and 10. All of them are valid, because they are greater or equal to 1. : )
@SyberMath
@SyberMath 3 жыл бұрын
Thanks for the comment! Would it work if we raised both sides to the 6th power?
@SyberMath
@SyberMath 3 жыл бұрын
Or should we isolate the cube root and then raise both sides to the 6th or 3rd power? 🤔😎😁
@snejpu2508
@snejpu2508 3 жыл бұрын
@@SyberMath Probably not. After raising to the 6th power you will still get square roots to 3rd or 5th power, so it wouldn't stop there. You'd have to raise it further... unless there were some really lucky simplifications. But without any substitutions it's probably impossible to solve this.
@jensonjoseph6296
@jensonjoseph6296 3 жыл бұрын
@@SyberMath Nope, you would need to isolate then raise both sides to 3rd power, isolate again and square. Directly raising L.H.S. to 6th power using binomial expansion is a nightmare!!!
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
Yes radicul are awesome and all math eather !!!!!!!!
@SyberMath
@SyberMath 3 жыл бұрын
Yes, they are! 😍
@freddyfozzyfilms2688
@freddyfozzyfilms2688 3 жыл бұрын
x = k^2 + 1
@christopherrice4360
@christopherrice4360 3 жыл бұрын
nice math problem choice
@SyberMath
@SyberMath 3 жыл бұрын
Glad you think so!
@myphz1747
@myphz1747 3 жыл бұрын
Great explanation! May I ask you which software did you use? Is it available on PC?
@SyberMath
@SyberMath 3 жыл бұрын
Thanks! Notability. It's not available for windows afaik
@mohammedal-haddad2652
@mohammedal-haddad2652 3 жыл бұрын
Awesome
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@marienbad2
@marienbad2 3 жыл бұрын
Nice, but what is all this Zee stuff? It's zed! ZED! Also could you do a video on where the idea of using substitutions in equations came from? Who did this first, and what were they trying to solve?
@SyberMath
@SyberMath 3 жыл бұрын
Zee is American, zed is sooo British!!! 😂
@SyberMath
@SyberMath 3 жыл бұрын
This is a good video idea! Thanks!
@brentwilson6692
@brentwilson6692 3 жыл бұрын
In America, we need to learn our A, Bed, Ceds.
@SyberMath
@SyberMath 3 жыл бұрын
😁
@umamaheswari7446
@umamaheswari7446 3 жыл бұрын
It's mental sum Ans: x = 1
@SyberMath
@SyberMath 3 жыл бұрын
Why?
@hattorikanzo2793
@hattorikanzo2793 3 жыл бұрын
When I saw this I guessed som trivial things like 2, 1 and then I thought of a number that would reduce the square root so i guessed 10.
@SyberMath
@SyberMath 3 жыл бұрын
Good guess!
@Teamstudy4595
@Teamstudy4595 3 жыл бұрын
X=1
@SyberMath
@SyberMath 2 жыл бұрын
...and x=2?
@Teamstudy4595
@Teamstudy4595 2 жыл бұрын
yeah Sir that's correct !
@prakashchander335
@prakashchander335 3 жыл бұрын
By putting x=1 we find first answer
@SyberMath
@SyberMath 3 жыл бұрын
Nice. Are there other solutions?
@deepjyoti5610
@deepjyoti5610 3 жыл бұрын
Nycc vedio
@SyberMath
@SyberMath 3 жыл бұрын
Thanks!
@omaral-aghbari681
@omaral-aghbari681 3 жыл бұрын
My IQ after the video be like:↗️↗️↗️↗️↗️
@SyberMath
@SyberMath 2 жыл бұрын
Great!
@MrALI4444
@MrALI4444 3 жыл бұрын
Put u^2=x-1 then 2-x = 1-u^2 and so on ...............
@SyberMath
@SyberMath 3 жыл бұрын
Nice
@carloshuertas4734
@carloshuertas4734 3 жыл бұрын
I understand that the values of x are 1,2, and 10. I got x=1 in my head.
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@Arif-ic7tt
@Arif-ic7tt 3 жыл бұрын
Hello, may I ask where you’re from because your accent sounds like Turkish accent and I am Turkish so I just wanted to know
@SyberMath
@SyberMath 3 жыл бұрын
Merhaba! 😁
@Arif-ic7tt
@Arif-ic7tt 3 жыл бұрын
@@SyberMath Merhabalar hocam 😄
@user-dz6pi4sm8u
@user-dz6pi4sm8u 3 жыл бұрын
Cool
@SyberMath
@SyberMath 3 жыл бұрын
Thanks!
@kurtlichtenstein2325
@kurtlichtenstein2325 3 жыл бұрын
Good video. Again, I thought I smelled gold, but no.
@SyberMath
@SyberMath 3 жыл бұрын
Sorry! 😁
@SyberMath
@SyberMath 3 жыл бұрын
Gold rush! 😁
@AshrafAli-qn3gb
@AshrafAli-qn3gb 3 жыл бұрын
I can only pee
@aashsyed1277
@aashsyed1277 3 жыл бұрын
What do you mean?
@SebastienPatriote
@SebastienPatriote 3 жыл бұрын
I mean... It's nice to have a technique but x=1 was so obvious here.
@SyberMath
@SyberMath 3 жыл бұрын
Yep!
@johnnath4137
@johnnath4137 3 жыл бұрын
These questions generally mean “find ALL the solutions”. Nothing wrong with spotting one or more solutions or even all of them, but having done so you then have to prove rigorously that there aren’t any more.
@mounirbenjnane6988
@mounirbenjnane6988 3 жыл бұрын
10 is not a solution. But good at all
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! 10 is a solution
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath yeah!
@raffaelevalente7811
@raffaelevalente7811 3 жыл бұрын
I set $2-x=z^3$ that means $x=2-z^3$ and the solution was faster
@SyberMath
@SyberMath 3 жыл бұрын
Cool!
@otakurocklee
@otakurocklee 3 жыл бұрын
Very nice!
@SyberMath
@SyberMath 3 жыл бұрын
Thanks!
Floor and Ceiling Functions in an Exponential Equation
8:36
SyberMath
Рет қаралды 9 М.
Solving an exponential equation without using logarithms
13:00
The IMPOSSIBLE Puzzle..
00:55
Stokes Twins
Рет қаралды 152 МЛН
Car Bubble vs Lamborghini
00:33
Stokes Twins
Рет қаралды 45 МЛН
Haunted House 😰😨 LeoNata family #shorts
00:37
LeoNata Family
Рет қаралды 16 МЛН
Solving an equation in non-standard ways
16:41
SyberMath
Рет қаралды 25 М.
A nonic equation with a radical
14:37
SyberMath
Рет қаралды 43 М.
Solving a Golden Radical Equation
13:50
SyberMath
Рет қаралды 118 М.
Can We Solve A Transcendental Equation 😁
10:11
SyberMath
Рет қаралды 3,5 М.
A Radical Equation with Golden Flavor
12:26
SyberMath
Рет қаралды 31 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,7 МЛН
Can you solve this Cambridge Entrance Exam Question?
24:48
Higher Mathematics
Рет қаралды 883 М.
BASIC Calculus - Understand Why Calculus is so POWERFUL!
18:11
TabletClass Math
Рет қаралды 306 М.
EXTREME quintic equation! (very tiring)
31:27
blackpenredpen
Рет қаралды 659 М.