Nice solution, but the one mentioned at the start also works. After cubing both parts we get 2-x = 1 - 3sqrt(x-1) + 3(x-1) - (x-1)sqrt(x-1) Then we isolate the square roots and get (x+2)sqrt(x-1)=4x-4 Notice that the RHS is just 4(x-1), so after squaring we get (x+2)^2*(x-1)=16(x-1)^2 So once we move everything to the left, we see that (x-1) can be factored out, yielding (x-1)(x^2+4x+4 - 16x+16) = 0 Solving the quadratic gives x=2 and x=10, and the first bracket gives x=1
@SyberMath3 жыл бұрын
Wow! I thought it was going to be messier
@shmuelzehavi49403 жыл бұрын
Same way.
@agnibeshbasu30893 жыл бұрын
nice! bring more videos like this and olympiad problems.
@SyberMath3 жыл бұрын
Thank you! I will bring you lots of interesting problems...😉
@x714n0____3 жыл бұрын
Very nice! I never saw this kind of substitution... ✌🏻
@SyberMath3 жыл бұрын
Thank you!
@usernamehere943 жыл бұрын
@@SyberMath Exactly! I was educated in the United States and I was never expose to such a substitution either. Thanks!
@osmanfb13 жыл бұрын
I just used u^3 - 2-x as a single substition. It worked out u + sqrt(2-u^3-1) = 1 sqrt(1-u^3)=1-u sqrt((1-u)(1+u+u^2)) = sqrt(1-u) sqrt(1-u) now u=1 is one solution. if u is not 1 then divide both sides by sqrt(1-u) sqrt(1+u+u^2) = sqrt(1-u) u(u+2)=0 u=0 and u=-2 are also solutions. In therms of x x=2 , x=10, and x=1 (corresponding to u=1, this is without introducing extra unknowns.
@elkincampos38043 жыл бұрын
Note that 2-x=1-(x-1). Then put u=√(x-1).It follows that (1-u^2)^(1/3)+u=1. u-1=(u^2-1)^(1/3). Therefore u^2-1=(u+1)*(u-1)=(u-1)^3. Thus 0=(u-1)^3-(u+1)*(u-1)=(u-1)*(u^2-2*u+1-u-1)=(u-1)*(u)*(u-3). Thus u=0,u=1 or u=3 that is x=u^2+1=1, 2 or 10.
@jeromemalenfant66223 жыл бұрын
???? Simpler: Let y equal the first radical, (as he does). Then x=2-y^3 and the second term is sqrt(1-y^3), so sqrt(1-y^3) = 1-y. Square both sides, the 1 cancels out, and you get y^3 + y^2 -2y = 0. One solution is y=0, or x=2. Dividing by y you get the quadratic, y^2 + y -2 =0, with solutions y = 1 and -2, corresponding to x = 1 and 10. So the solutions are x= 1, 2, 10.
@SyberMath3 жыл бұрын
Nice!
@nerusfuho6743 жыл бұрын
This is really awesome, I like what the different radicals work together 👍
@SyberMath3 жыл бұрын
Glad you like it!
@misterdubity30733 жыл бұрын
I used u=2-x to get rid of the cube root. Then w=sqrt(1-u). Same results for x in the end. My solution worked, but more messy and not as elegant.
@enalaxable3 жыл бұрын
Still I think substitution is a bit easier: u^3=2-x , gives u*(u^2+u-2) =0. and same results for u* in {-2,0,1}, thus x* in {10,2,1}. It's typical strategy to get rid the highest radical first.
@SyberMath3 жыл бұрын
I agree!
@ulrichkaiser37942 жыл бұрын
At 2:25 it is easier to add eq 2 and eq 3 , resulting in y^3 + z^2 = 1 ... Then, I replaced z^2 by (1-y)^2 and so on, resulting in y (y+2) (y-1) = 0 From y = { 0 , -2 , 1 } one can derive x = { 2 , 10, 1 }
@ulrichkaiser37942 жыл бұрын
Thank you very much ! 🥰🌻🍀
@AnthonySpinelli-fe4vn3 жыл бұрын
My method is as follows: move the cube root to the RHS and negate the inside of the radical (as the function is odd) and square both sides so as to simplify the LHS. And upon doing so, you can substitute x-2 for, say, a variable y (y = x - 2). With this equation (I’ll use rt to mean cube root) y=2rt(y)+rt(y^2). The next step isn’t real rigorous, but you can divide out the cube root of y (and keep more that y=0 was the lost solution) and solve a quadratic in terms of the cube root of y. This leaves the three answers as y = -1, 0 and 8, which give the x values of x = 1, 2, and 10.
@SyberMath3 жыл бұрын
That's cool!
@chhromms.81383 жыл бұрын
easy to understand and great explanation. perfect
@SyberMath3 жыл бұрын
Glad you think so!
@mrphlip3 жыл бұрын
At the start, you say that just isolating the cube root and cubing both sides would get too messy, but it's not _that_ bad... You end up with: 2 - x = (1 - sqrt(x-1))³ 2 - x = 1 - 3sqrt(x-1) + 3(x-1) - (x-1)sqrt(x-1) We then want to isolate the square root: 2 - x = 3x - 2 - (x+2)sqrt(x-1) 4 - 4x = -(x+2)sqrt(x-1) 4(x-1)/(x+2) = sqrt(x-1) (noting we can safely divide by x+2 as x=-2 is not a solution) 16(x-1)²/(x+2)² = x - 1 x = 1 is clearly a solution, but we can cancel out the (x-1) to find other solutions 16(x-1)/(x+2)² = 1 16x - 16 = x² + 4x + 4 x² - 12x + 20 = 0 (x - 2)(x - 10) = 0 x = 2 or 10 Since we squared both sides we need to test the solutions in the original equation, but all three fit as shown in the video.
@SyberMath3 жыл бұрын
Nice!
@aashsyed12773 жыл бұрын
@@SyberMath WOW. WOW
@davidseed29393 жыл бұрын
At about 2:00 you say write everything in terms of x. But that's not what you want and thats not what you do. We had everything in terms of x. What you effectively do is to eliminate x. Adding the last two equations gives y^3 +z^2 = 1 Then you substitute y=(1-z) . Now we have everything in terms of z which nicely cancels. If we had written the equation in terms of y. It would also work. y^3+ (1‐y)^2 =1 y^3 +(y^2 -2y+1) =1 y(y^2 +y -2)=0 y(y-1)(y+2)=0 solutions at y=0,1,-2 X =1,2 ,10
@SyberMath3 жыл бұрын
You're right!
@theafs45473 жыл бұрын
Good solution
@SyberMath3 жыл бұрын
Thank you, Mr. Einstein! 😁
@indrjeetkumar10303 жыл бұрын
Love your work 🔥
@SyberMath3 жыл бұрын
Thanks 🔥
@tharanathakula35883 жыл бұрын
Excellent.
@SyberMath3 жыл бұрын
Many thanks!
@Deepak0Aggarwal3 жыл бұрын
Substitute is his favourite method
@jonyp13203 жыл бұрын
nice ! learned something
@SyberMath3 жыл бұрын
Glad to hear that!
@aliasgharheidaritabar91283 жыл бұрын
Wonderful.you keep me busy with your videos.
@SyberMath3 жыл бұрын
Glad you like them!
@quajutsu93723 жыл бұрын
Wherever I see a Math channel I just click on Subscribe, as long as I respect its owner like you
@SyberMath3 жыл бұрын
Thank you! I appreciate that!
@victorsaldiviacardoch87973 жыл бұрын
I need you to make an infinite amount of this videos
@SyberMath3 жыл бұрын
I love them, too but I only have a finite number of these! 😁
@christinayu95983 жыл бұрын
Thanks
@SyberMath3 жыл бұрын
No problem
@neuralwarp3 жыл бұрын
Very nice!
@SyberMath3 жыл бұрын
Thanks for the visit
@carloshuertas47343 жыл бұрын
Very good math problem. I got x=1. I thought it was the only solution.
@DatBoi_TheGudBIAS2 жыл бұрын
I just looked at the thumbnail and 1 came to my head lol
@paramjotsingh46823 жыл бұрын
Can you bring up a problem on numbers of bases less than 10, in the upcoming videos? It will be great if you do so.
@SyberMath3 жыл бұрын
Good idea!
@paramjotsingh46823 жыл бұрын
Thanks. So, please do consider that as well.
@snejpu25083 жыл бұрын
I didn't like the cube root, which demands raising everything to the 6th power. So I made a strange substitution: 2-x=y^3. Now the cube root becomes just y and x-1=1-y^3. So, when I had to deal only with a square root, I squared everything and after some easy manipulations I received 3 solutions for y: 0, 1 and -2. 2-x=y^3, so x=2-y^3. So the solutions for y are 2, 1 and 10. All of them are valid, because they are greater or equal to 1. : )
@SyberMath3 жыл бұрын
Thanks for the comment! Would it work if we raised both sides to the 6th power?
@SyberMath3 жыл бұрын
Or should we isolate the cube root and then raise both sides to the 6th or 3rd power? 🤔😎😁
@snejpu25083 жыл бұрын
@@SyberMath Probably not. After raising to the 6th power you will still get square roots to 3rd or 5th power, so it wouldn't stop there. You'd have to raise it further... unless there were some really lucky simplifications. But without any substitutions it's probably impossible to solve this.
@jensonjoseph62963 жыл бұрын
@@SyberMath Nope, you would need to isolate then raise both sides to 3rd power, isolate again and square. Directly raising L.H.S. to 6th power using binomial expansion is a nightmare!!!
@tonyhaddad13943 жыл бұрын
Yes radicul are awesome and all math eather !!!!!!!!
@SyberMath3 жыл бұрын
Yes, they are! 😍
@freddyfozzyfilms26883 жыл бұрын
x = k^2 + 1
@christopherrice43603 жыл бұрын
nice math problem choice
@SyberMath3 жыл бұрын
Glad you think so!
@myphz17473 жыл бұрын
Great explanation! May I ask you which software did you use? Is it available on PC?
@SyberMath3 жыл бұрын
Thanks! Notability. It's not available for windows afaik
@mohammedal-haddad26523 жыл бұрын
Awesome
@SyberMath3 жыл бұрын
Thank you!
@marienbad23 жыл бұрын
Nice, but what is all this Zee stuff? It's zed! ZED! Also could you do a video on where the idea of using substitutions in equations came from? Who did this first, and what were they trying to solve?
@SyberMath3 жыл бұрын
Zee is American, zed is sooo British!!! 😂
@SyberMath3 жыл бұрын
This is a good video idea! Thanks!
@brentwilson66923 жыл бұрын
In America, we need to learn our A, Bed, Ceds.
@SyberMath3 жыл бұрын
😁
@umamaheswari74463 жыл бұрын
It's mental sum Ans: x = 1
@SyberMath3 жыл бұрын
Why?
@hattorikanzo27933 жыл бұрын
When I saw this I guessed som trivial things like 2, 1 and then I thought of a number that would reduce the square root so i guessed 10.
@SyberMath3 жыл бұрын
Good guess!
@Teamstudy45953 жыл бұрын
X=1
@SyberMath2 жыл бұрын
...and x=2?
@Teamstudy45952 жыл бұрын
yeah Sir that's correct !
@prakashchander3353 жыл бұрын
By putting x=1 we find first answer
@SyberMath3 жыл бұрын
Nice. Are there other solutions?
@deepjyoti56103 жыл бұрын
Nycc vedio
@SyberMath3 жыл бұрын
Thanks!
@omaral-aghbari6813 жыл бұрын
My IQ after the video be like:↗️↗️↗️↗️↗️
@SyberMath2 жыл бұрын
Great!
@MrALI44443 жыл бұрын
Put u^2=x-1 then 2-x = 1-u^2 and so on ...............
@SyberMath3 жыл бұрын
Nice
@carloshuertas47343 жыл бұрын
I understand that the values of x are 1,2, and 10. I got x=1 in my head.
@SyberMath3 жыл бұрын
Nice!
@Arif-ic7tt3 жыл бұрын
Hello, may I ask where you’re from because your accent sounds like Turkish accent and I am Turkish so I just wanted to know
@SyberMath3 жыл бұрын
Merhaba! 😁
@Arif-ic7tt3 жыл бұрын
@@SyberMath Merhabalar hocam 😄
@user-dz6pi4sm8u3 жыл бұрын
Cool
@SyberMath3 жыл бұрын
Thanks!
@kurtlichtenstein23253 жыл бұрын
Good video. Again, I thought I smelled gold, but no.
@SyberMath3 жыл бұрын
Sorry! 😁
@SyberMath3 жыл бұрын
Gold rush! 😁
@AshrafAli-qn3gb3 жыл бұрын
I can only pee
@aashsyed12773 жыл бұрын
What do you mean?
@SebastienPatriote3 жыл бұрын
I mean... It's nice to have a technique but x=1 was so obvious here.
@SyberMath3 жыл бұрын
Yep!
@johnnath41373 жыл бұрын
These questions generally mean “find ALL the solutions”. Nothing wrong with spotting one or more solutions or even all of them, but having done so you then have to prove rigorously that there aren’t any more.
@mounirbenjnane69883 жыл бұрын
10 is not a solution. But good at all
@SyberMath3 жыл бұрын
Thank you! 10 is a solution
@aashsyed12773 жыл бұрын
@@SyberMath yeah!
@raffaelevalente78113 жыл бұрын
I set $2-x=z^3$ that means $x=2-z^3$ and the solution was faster