You can solve the third one either way, 1) 4x = 3 (mod 5) -1x = 3 (mod 5) x = -3 (mod 5) x = 2 (mod 5) 2) 4x = 3 (mod 5) 4x = 3 + 5 (mod 5) 4x / 4 = 8 / 4 (mod 5) (gcd(4, 5) = 1) x = 2 (mod 5) It's interesting how you can simplify either side by multiples of 5 to get the answer, really enforces the idea that it is "mod 5".
@OonHan6 жыл бұрын
BLACK PEN RED PEN *_YAYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY_*
@blackpenredpen6 жыл бұрын
Oon Han yay!!!
@BigDBrian6 жыл бұрын
note, for this comment = will replace the congruence symbol 4x = 3 (mod 5) 4x = 8 (mod 5) x = 2 (mod 5)
@blackpenredpen6 жыл бұрын
Yup!
@kevinm13176 жыл бұрын
Piyush Sarangi Yes, but there's no reason to.
@ritwiksharma70216 жыл бұрын
Why do we add mod 5 to 3? Please send the respective theorem.
@awawpogi30365 жыл бұрын
@@ritwiksharma7021 it's because 3 (mod 5) is the same as 8 (mod 5)
@raquiliosamuela.depoloniaj24465 жыл бұрын
-x = 3 (mod 5) x = -3 (mod 5) x = 2 (mod 5)
@elsavelaz6 жыл бұрын
I wish it had the final solution to self-check understanding, because if it was "so easy," I wouldn't have googled help. Cute vid, good explanation, just please finish the examples!
@muhammadhamid31088 ай бұрын
4x=3 mod 5 (5x-x)=3 mod 5 -x=3 mod 5 x=-3 mod 5 x=2 mod 5 Thank you so much Black Pen Red Pen.
@FrogworfKnight3 жыл бұрын
Not certain if this is a weird method for the second one but... 4x≡2(mod 5) 2x≡1(mod 5) [divide by two, since gcd(2,5)=1 and 2/2 gives an integer answer] 2x≡6(mod 5) [increasing 1 by one modular 5 cycle to 6] x≡3(mod 5) [divide by two, since again gcd (2,5)=1 and 6/2 gives an integer answer]
@Destroyerz117Ай бұрын
these helped out a ton, thank you so much
@hungryfareasternslav18235 жыл бұрын
3:38 When you finish the number theory
@angelaking97012 ай бұрын
wow finally in understand the mod function thank u so much !!!
@akshat92826 жыл бұрын
For the third one, just add 5 to the right side and it becomes the same as the first equation.
@emmanuelmercy384011 ай бұрын
The one I even want u to do u did not do it self🤨
@monicawughanga33383 ай бұрын
this was so helpful! thanks!
@jonashammerich35526 жыл бұрын
I really love your mic! still!!! And that intro was soooooooooo cute!!
So that's where the black pen red pen yay coming from
@blackpenredpen6 жыл бұрын
Rex Evan yes!!!!
@blackpenredpen6 жыл бұрын
Did u read what I wrote?
@blackpenredpen6 жыл бұрын
First!!!!!
@AlgyCuber6 жыл бұрын
eigth ...
@TheLaughterAsylum6 жыл бұрын
Blackpenredpen 57th
@nigit74516 жыл бұрын
(2^2=2(2)=2+2=4)th reply
@anbn26186 жыл бұрын
551st (mod2)
@gorymclorry74146 жыл бұрын
Is the answer to the third question: x is congruent to 2 (mod 5)? Steps: 4x ≡ 3 (mod 5) -1x ≡ 3 (mod 5) like step 2. x ≡ -3 (mod 5) x ≡ 2 (mod 5) One doubt: Y didn't you use the same method of making it -1x in example 1?
@holyshit922 Жыл бұрын
Multiply by 4^{-1} mod 5 = 4
@chancerc7523 Жыл бұрын
Assume the equal signs are congruences, due to keyboard limitations. Given 4x=2 (mod 5), Can you just do: 4x=2=12 (mod 5) => 12/4=3, hence {xEZ: x=3 (mod 5/1)} is set of all solutions.
@snnwsttАй бұрын
I have not perused all the answers, but we can clearly multiply both sides by 4. Left side, 4*4X = 16 X = 1 X (mod 5) --- since (A*B) | C == ( (A|C) * (B|C) ) | C Right side : 4* 3 = 12 = 2 (mod 5) So X = 2 (mod 5). In fact, in AX=B (mod C), when pgcd(A, C) =1, then A has an inverse, Q, such that Q*A=A*Q = 1 ( mod C). Note that 1 and (C-1) are their own inverse mod C, that is, (C-1)^2 = 1 mod C (since C^2 -2C + 1 = 1 mod C ) Otherwise, A has a zero-producing-multiplier such that A*P = P*A = 0 (mod C) while neither A, neither P being 0 (such as 2*3 = 0 (mod 6) ) An integer A can either have an inverse, either a zero-multiplier, but not both, for given modulo. So, C as prime number will have all its classes having an inverse (except its class 0) since C being prime cannot have A*B = C, with A and B integers between 1 and C-1, so modulo C cannot produce any zero-multiplier among its classes. If the pgcd(A, C) > 1, we may have multiple solutions ( 3X = 6 mod 9 has X=2, 5 and 8 as solutions), or none ( 3X = 5 mod 9 has no solution). The second member, B in AX=B mod C, must be divisible by D = pgcd(A, C) to have at least a solution, and owns D distinct solutions (among its classes) each of them "distant" for C\D (back to 3X = 6 mod 9, we have D=3, and the D solutions are distant of C\D = 3, as are 2+3 = 5, 5+3=8 and 8+3 = 2 mod 9 ).
@deidara_85983 жыл бұрын
Trick: 4 = -1 (mod 5) 4x = 8 (mod 5) -x = 8 (mod 5) 4x = 2 (mod 5) -x = 2 (mod 5) 4x = 3 (mod 5) -x = 3 (mod 5) Of course all of them are trivial -x = 8 (mod 5) x = 5k-3 for any integer k (8 = 3 mod 5) -x = 2 (mod 5) x = 5k-2 for any integer k -x = 3 (mod 5) x = 5k-3 for any integer k
@kenza10249 ай бұрын
Bro you helped me thank you
@shandyverdyo76885 жыл бұрын
I'm very grateful to u. Thanks and nice timing that i need this one.
@kinyutaka5 жыл бұрын
4X cong 3 mod 5, 5+3=8, 8/4=2. X=2.
@sergioh55156 жыл бұрын
2 videos on modular arithmetic back after back! :D thanks again. I really like the videos a lot thnx. Mainly cuz I actually like modular arithmetic haha thnx again!!!!!!!
@blackpenredpen6 жыл бұрын
Yay!!!!!
@Danicker4 жыл бұрын
For the second one you could also do: 4x = 2mod5 4x = 12mod5 (+10) x = 3mod5 (/4)
@mahlet53962 жыл бұрын
76
@Apollorion5 ай бұрын
Danicker, I think you didn't divide by three but by four, ao because I used this method myself, too.
alternative method would be multiplying by the inverse of 4 aka 4. Granted this is harder in the general case because computing the inverse usually takes more time.
@blackpenredpen6 жыл бұрын
yup!
@deidara_85983 жыл бұрын
With the Euclidian algorithm it usually only takes 2 or 3 rounds on smaller numbers, can be done in seconds on a calculator.
@redriot87263 жыл бұрын
4 x k 2(mod3) find the value of integer x
@cerendemir99774 жыл бұрын
This is just what I needed. Thank you!
@tptangeek8146 жыл бұрын
It's interesting how fast you solve these equations! I'm in highschool in France, and to solve for example 4x ≡ 3 [5] we do so: 4x ≡ 3 [5] ⇔ ∃y ∈ ℤ, 4x − 5y = 3 Considering the equation 4x − 5y = 3, where (x ; y) ∈ ℤ², we will first find a particular solution. In this case, we can just take x = − 3 and y = − 3, which leads us to 4x − 5y = 4 × (− 3) − 5 × (− 3) = − 12 + 15 = 3. Next, we can say that if (x ; y) is solution, then we have 4x − 5y = 3 = 4 × (− 3) − 5 × (− 3), so 4x − 5y − (4 × (− 3) − 5 × (− 3)) = 4x − 5y + 4 × 3 − 5 × 3, and finally 4(x + 3) = 5(y + 3). At this point, we use the Gauss' theorem that tells us that because GCD(4 ; 5) = 1, (x + 3) can be divided by 5 and (y + 3) can be divided by 4. So we get x + 3 = 5k and y + 3 = 5k', where (k ; k') ∈ ℤ², which means that x ≡ − 3 [5], which can be written as x ≡ 2 [5].
@touhami34724 жыл бұрын
Bonjour, Très vite resolu, en effet ! Ça fait une sacrée différence. J'ai été encore plus surpris quand il a divisé par 4 dans 4x=8 [5] : c'est tabou en France d'utiliser la division dans les congruences. Je me suis penché sur sa démonstration, je n'y ai jamais pensé auparavant. En fait, c'est très simple ; ax=b[n] il exst k dans Z tq: ax=b+n×k ce qu'on sait en France mais on n'allait pas plus loin: Ici, 4x=8[4] eqvt à 4(x-2)=5×k eqvt à 4 divise k car pgcd(4,5)=1 (Bezout): k=4×k' , k' dans Z. k existe bel et bien d'où l'équivalence. Bonne journée.
@touhami34724 жыл бұрын
Très intéressant ! Merci beaucoup.
@Ethan-mj6wy6 жыл бұрын
Thank you for all the high quality videos bprp, they are much appreciated 💜
@cloud_2452 жыл бұрын
2:53 Why do we want the answer to be as positive as possible?
@ms.p28323 жыл бұрын
3) x = 2(mod 5)
@optionf43 жыл бұрын
tysm this video helped a lot :)
@ajayagrawal10906 жыл бұрын
Awesome quick solver Great job!!!
@healthybodytoday4 жыл бұрын
Thank you very much for these!
@pritambhagat96624 жыл бұрын
4x=3(mod 5) -1x=3(mod 5) -1×-1x=-1×3(mod 5) x=-3(mod 5) x=2(mod 5) Yaa i got it ...Yahoo 🤘🤘🤘
@AviMehra6 жыл бұрын
No need to combine. Just add 5 to right side and you get the 1st
@blackpenredpen6 жыл бұрын
Yup, that's exactly the way I had in mind : )
@MiketheCoder4 жыл бұрын
NEEDED THIS!!
@soumyachandrakar91006 жыл бұрын
Blackpen-Redpen!!!!!! yay!!!!!!
@blackpenredpen6 жыл бұрын
Yesss
@RainBarrelable6 жыл бұрын
I love these videos!!!
@lamug4 жыл бұрын
No se nada de inglés pero me ayudo mucho jajajaj gracias!!!
@heyitsfrknfrank6 жыл бұрын
Lord god and savior! I have found you! My professor and the book made everything so much complicated!
@blackpenredpen6 жыл бұрын
Frank Maayn : )
@plaustrarius6 жыл бұрын
i love this intro!!! sidenote! have you seen the simpson's 'fake fermat' equations? [3987]^12 + [4365]^12 = [4472]^12 [1782]^12 + [1841]^12 = [1922]^12 are these statements true? illustrate why or why not using only pencil, paper, and/or calculator. but not a computer or computer algebra program!
@brunoandrades55306 жыл бұрын
Early Kyler The second one is pretty easy, you easily see that if it were true, that would imply that an odd number plus an even number equals an even number, and that's not true, you can do the same with the second but in mod 4 I think
@plaustrarius6 жыл бұрын
Bruno Andrades mod 3! But yes lol
@brunoandrades55306 жыл бұрын
Early Kyler Oh, ty, I didn't actually try it, but it seemed like
@blackpenredpen6 жыл бұрын
Thanks!!! And yes I have seen them and will do a video on them too.
@purushotamgarg84536 жыл бұрын
Early Kyler BlackPenRedPen can't do it using only pencil, paper and calculator.... He needs the power of Blue marker......
@obinnanwakwue57353 жыл бұрын
4x congruent to 3 (mod 5) 4x congruent to -2 (mod 5) -x congruent to -2 (mod 5) x congruent to 2 (mod 5) yay!
@chaosredefined38344 жыл бұрын
Alternatively: 4x = 2 mod 5 2 is not divisible by 4, try adding 5. 4x = 7 mod 5 7 is also not divisible by 4, try adding 5 a second time. 4x = 12 mod 5 12 is divisible by 4, and gcd(4,5) = 1, so we can divide by 4. x = 3 mod 5. If you add 5 five times, and it's never divisible by 4, then there is no answer.
@mryip064 жыл бұрын
How can you solve 720n ≡ -1 (mod 2027) ? I can only make use of Chinese remainder theorem and solving Diophantine equation. I look forward to learn other methods from you. You are a great teacher. Thanks for your sharing.
@ouraghyoussef56123 жыл бұрын
Bonjour je pense que votre question concerne la résolution de l'équation 720n_=-1[2027]. Si c'est cela alors voila cette solution obtenue au moyen du schéma d'Ouragh 2027....720.......587......133......55.......23......9.......5.....4.......1 ...............-2.........-1.........-4.........-2........-2.....-2.......-1...-1 .............442.....-157......128......-29.......12....-5........2...-1.......1 et donc on aura n_=442*(-1)[2027] soit n_=2026[2027] Cordialement.
@manishk455 жыл бұрын
At 2:49 you went against my prediction. You should have multiplied both sides by -1.
@youturn98705 жыл бұрын
2x congrent 7 (mod17)
@khalidmomandd Жыл бұрын
Can you solve this equation step by step (2)^x +x =37
@RandomDays9066 жыл бұрын
-x=-2(mod 5) x=2(mod 5)
@diablo38795 жыл бұрын
can u tell how can I solve similar questions where equation is x^2 = a (mod p), here value of x and a is known , how can i find p
@akmadisangkulapersonal3 жыл бұрын
Goodexplaining
@soniakamboj29166 жыл бұрын
x=2(mod5)
@Rubiks8923 жыл бұрын
why does the gcd = 1 thing work for dividing?
@swetagupta62544 жыл бұрын
Can one solve:5x is congruent to 1 modulo 12 with the same method??
@javierlim48736 жыл бұрын
The answer to the last one is 2(mod5) right?
@crosby73196 жыл бұрын
Yes, that is correct. Basically, apply the same method as no. 2 to get x = -3 (mod 5), i.e. x = 2 (mod 5)
@poonamkabra63676 жыл бұрын
Yeah!!
@TheLaughterAsylum6 жыл бұрын
Is this correct Note :- please replace = sign with congruent sign. 4x=3(mod5) X=-3(mod5) X=2(mod5) thats it!!! Please check my answer.
@blackpenredpen6 жыл бұрын
Yes.
@TheLaughterAsylum6 жыл бұрын
blackpenredpen thanks
@OjoNike-x4l21 күн бұрын
Please l want you to solve some questions 4X =1
@nobee64974 жыл бұрын
4x=3(mod5) -x=3 (mod5) x=-3 (mod5) x=2 (mod 5) ----- final answer is the process correct?
@Apollorion5 ай бұрын
It is one of the correct processes. I myself added 0 mod 5 = 5 mod 5 to the equation and got a copy of question (1) en retour. Same question? -> Same results.
@alancristopher35392 жыл бұрын
How Prove that for all n the following congruence holds: n^3≡n(mod 3)?
@giixgiggidygao45693 жыл бұрын
Is the last one x congruent to 2 mod 5
@emersonrodriguescoutinho13446 жыл бұрын
Obrigado!!!
@themathaces83704 жыл бұрын
2. Notice that 4x=2 (mod 5)=12 (mod 5) So we have 4x=12 (mod 5). Dividing both sides by 4, we have x=3 (mod 5) 3. Notice that 4x=3 (mod 5)=8 (mod 5) So we have 4x=8 (mod 5). Dividing both sides by 4, we have x=2 (mod 5) Remark: Note that the 'mod 5' will stay no matter what. This means that we can try values, and guess and check. Best, The Math Aces
@denilsoncosta314156 жыл бұрын
You can show proof if the sum of each number of a big number is divided by 3, then this number is divided by 3.
@youturn98705 жыл бұрын
How we solve 2x congrent(mod7)?? Please
@yoavshati6 жыл бұрын
Can you do the inegral of ln(ln(x))?
@blackpenredpen6 жыл бұрын
Yoav Shati That is not elementary
@latasurha52206 жыл бұрын
Very good sir
@niclo62856 жыл бұрын
4x=3 (mod 5) 4x=8 (mod 5) x=2 (mod 5) Am I right ?
@Singlton Жыл бұрын
What is the purpose of doing this in the real world Applications?
@SoyFerchow6 жыл бұрын
I love you.
@bhsacademy1590 Жыл бұрын
Hello sir
@orlandomathlearningacademy91545 жыл бұрын
4mod5 =-1?? Remainder cannot be negative
@nikoskypseli13685 жыл бұрын
Excelent!!! what the result of a^((p-1)/k) mod p where a^(1/k) not integer. Thanks in advance.
@reshmasahu15675 жыл бұрын
What is the answer of 4x=3 mod 7
@Apollorion5 ай бұрын
It is (sort of) known. > 4-7=-3 => 4x=-3x mod 7 => (4x=3 mod 7 -3x=3 mod 7) > 7-1=6 => -1=6 mod 7 And so: 4x=3 mod 7 -3x=3 mod 7 x=-1 mod 7 x=6 mod 7 => x=6+7k with k being any integer
@arphano514 жыл бұрын
On n'a pas le droit de diviser des congruences aussi facilement que ça. Il suffit de faire un tableau de congruences et on trouve facilement les solutions
@ZelForShort6 жыл бұрын
What's mod tho. New concept for me
@blackpenredpen6 жыл бұрын
Alpha Designs you can watch my previous video. :)
@ZelForShort6 жыл бұрын
blackpenredpen Thank you
@SKris74 жыл бұрын
Is 8 mod 5 even legit?
@TomSkinner3 жыл бұрын
I don't think it is
@not.u7682 жыл бұрын
Hey plz help with this 17x = 1 mod 5
@Apollorion5 ай бұрын
17x mod 5 = 15x+2x mod 5 = 2x mod 5 1 mod 5 = 1 + 0 mod 5 = 1 + 5 mod 5 = 6 mod 5 And so: 17x = 1 mod 5 = 2x = 6 mod 5 => x = 3 mod 5 That was very difficult, right?
@tawfeeqmuallem90865 жыл бұрын
mfkr i opened the video for the third example
@AmitKumar-ho3mr6 жыл бұрын
Sir,if a^5 b+3 is congruent to o,1,or -1 mod 9 then a^5 b is congruence to 5,6,or 7mod 9.why????????sir, i request u to explain it asap becoz i am in trouble.
@Apollorion5 ай бұрын
Let's start with, for ease of expression: a^5 b = y then the question becomes: y+3=x mod 9 with x equal to 0, 1 or --1 then why is y = 5, 6 or 7 mod 9 ? All you have to do is subtract 3 from LHS and RHS, and add 9 to the RHS to get it positive. You can do so because 9 mod 9 = 0 mod 9
@carlosrivera99014 жыл бұрын
Puedes ayudarme con este ejercicio x^5 - 3x^4 + x - 2=0( mod 165)
@Magic738056 жыл бұрын
Sir, Can I ask you something?
@blackpenredpen6 жыл бұрын
Ved Prakash yes?
@Magic738056 жыл бұрын
Sir, What is your wife's name?😂😂😂
@blackpenredpen6 жыл бұрын
You already know!
@Magic738056 жыл бұрын
Really Sir, I don't know.
@roannemaeordas31844 жыл бұрын
Please enlighten me please. 😭
@suneetiyer816 жыл бұрын
Hey! could someone please help me with this problem on geometry of complex numbers? Find the centre, radius and arc length of the arc of the circle formed by the set of all complex numbers satisfying arg [(z-5+4i) ÷ (z+3-2i)] = -π/4.
@dusutiwary94566 жыл бұрын
Yay!!!!!
@no0rd0ll264 жыл бұрын
Bhai ap apna bolny ka styl thk kryn xara b ni smj ati apki ...actions e ni khtm hoty ap k tou