Solving This System of Equations in 2 Ways | Harvard-MIT Mathematics Tournament 2000

  Рет қаралды 54,554

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер: 44
@DaveyJonesLocka
@DaveyJonesLocka 2 жыл бұрын
I was totally expecting the first technique. By contrast, that second technique blew my mind. It is so simple, yet so elegant. I can’t believe it wasn’t part of my equation solving arsenal. Well, it is now!
@user-mc4vd1cx9b
@user-mc4vd1cx9b 2 жыл бұрын
Check IMO2019 shortlist's A3
@mcwulf25
@mcwulf25 2 жыл бұрын
I did it another way. Factorised the second eqn (x+y)(x^4-..........+y ^4) = 82 First brackets is 2. So x^4 - x^3.y + x^2 y^2 - x.y^3 + y^4 = 41 Subtract from this (x+y)^4, expanded, which is just 16, and we get after factorising out -5xy -5xy(x^2 + xy + y^2) = 25 The brackets is just 4-xy after substituting in the square of eqn 1. The rest is like solution 1 where we solve for xy and substitute into eqn 1.
@wise_math
@wise_math 2 жыл бұрын
Hello there mcwulf, consider look to my channel too for similar math olympiad problems. Thanks and regards.
@Skyler827
@Skyler827 2 жыл бұрын
You introduced a new variable in the second method, but it seems like it would be easier to just define y= 2-x and put that in the second equation and just solve for x.
@bowlteajuicesandlemon
@bowlteajuicesandlemon Жыл бұрын
It's doesn't seem that much easier to me. You have to factor a cubic polynomial, you can take the factor (x-y) out to make it quartic, while this solution is much quicker.
@reeb3687
@reeb3687 9 ай бұрын
it just looks so nice when the a^5 cancels
@themathsgeek8528
@themathsgeek8528 Жыл бұрын
The second method is something I use often so it was nice to see it here!
@keinKlarname
@keinKlarname 2 жыл бұрын
I really like the 2nd approach.
@wise_math
@wise_math 2 жыл бұрын
Hello there! consider look to my channel too for similar math olympiad problems. Thanks and regards.
@rlouisw
@rlouisw 2 жыл бұрын
I did it the first way. The second method is very clever, and it's why I watch videos like this. My brain doesn't often accept the method that makes the problem harder, but in some cases that's the easiest thing to do.
@fedorlozben6344
@fedorlozben6344 2 жыл бұрын
The second one was as so unusual! Very interesting substitution
@star_ms
@star_ms 2 жыл бұрын
This is going in my list of tools. Thanks
@wes9627
@wes9627 8 ай бұрын
I only know one way to solve this problem. Substitute x=1+z and y=1-z into the given equation and rearrange to (z+1)^5-(z-1)^5-82=0. Noting that odd powers of z cancel out and using Pascal's Triangle: 1 5 10 10 5 1, we get 2[5z^4+10z^2+1]-82=0 or z^4+2x^2-8=0, which has roots z^2=(-2±6)/2=2 or -4 or z=±√2 or ±2i. It follows that x=1+z=1±√2 or 1±2i and y=1-z=1∓√2 or 1∓2i.
@ilayday1
@ilayday1 Ай бұрын
Why do u substitute it like that?
@Amoeby
@Amoeby 2 жыл бұрын
Why did you reject complex solutions? They are quite fitting the system. (1+2i)^5 = 41+38i and (1-2i)^5 = 41-38i. So their sum is equal to 82 and sum of the 1+2i and 1-2i is equal to 2.
@ropenutter6321
@ropenutter6321 2 жыл бұрын
It's because the question asked for real number solutions. He says it in the first 5 seconds of the video.
@sdspivey
@sdspivey 2 жыл бұрын
@@ropenutter6321 Complex numbers ARE real. Just as real as negative numbers.
@ropenutter6321
@ropenutter6321 2 жыл бұрын
@@sdspivey They certainly do exist BUT they are not real numbers as in they aren't in the set of real numbers, just as 1/2 is not an integer complex numbers do not belong to R but they do belong to C.
@Amoeby
@Amoeby 2 жыл бұрын
@@ropenutter6321 oh, yeah, I missed that. That explains everything.
@charliebrett7510
@charliebrett7510 2 жыл бұрын
4:00 where do you get z^2 - 2z + 5 from?
@badribishaldas9627
@badribishaldas9627 2 жыл бұрын
Wonderful approach
@wise_math
@wise_math 2 жыл бұрын
Hello there Badri! consider look to my channel too for similar math olympiad problems. Thanks and regards.
@willbishop1355
@willbishop1355 2 жыл бұрын
Nice problem. I did it the first way, solving for xy. I also noticed that xy has to be negative, because if x and y are two positive numbers that add up to 2, then x^5 + y^5 cannot be larger than 32. So we can reject the xy = 5 solution right away and assume xy = -1.
@LouisLeCrack
@LouisLeCrack 2 жыл бұрын
Why can't x^5+y^5 be larger than 32?
@cristianionita8359
@cristianionita8359 2 жыл бұрын
i wrote y=2-x, obtained a quartic and applied newton raphson for it. starting from 0, after 3 or 4 iterations i got something like -0.41421 which looked oddly similar to sqrt(2) after the decimal point.
@ranshen1486
@ranshen1486 2 жыл бұрын
The quartic can be factored into the form (y^2+ay+b)*(y^2+cy+d).
@cristianionita8359
@cristianionita8359 2 жыл бұрын
@@ranshen1486 nice, good to know
@GillAgainsIsland12
@GillAgainsIsland12 2 жыл бұрын
That second method was very clever. Conjugates. Of course.
@genosingh
@genosingh 2 жыл бұрын
I decided to represent x^5+y^5 as product of x+y and x^4+y^4 and subtracting products appropriately and this allows us to substitute xy=z and then solve the quadratic, and plug into the first eqn to solve for x and y.
@robyzr7421
@robyzr7421 2 жыл бұрын
Ok until 1.38 time. Then putting (x^2 +y^2) = (x +y) ^2 - 2xy and simplifying I find this : (x+y) ^5=(x^5+y^5) - 5x^2y^2(x+y) +5xy(x+y)^3 and so xy =-1 v xy = 5. Then find x and y by a simple system : x^2 + y^2 = 4 - 2xy.. =6 and x + y = 2.... x =1+ 2^0,5 V y = 1- 2^0,5
@giuseppemalaguti435
@giuseppemalaguti435 2 жыл бұрын
x=1+2i,y=1-2i(e viceversa)... x=1+sqrt2,y=1-sqrt2 è viceversa
@lukinhasgatinho16
@lukinhasgatinho16 2 жыл бұрын
Obrigado por esse conteúdo !
@SKAOG21
@SKAOG21 2 жыл бұрын
Damn the second solution was much smarter
@bhavyachobisa1972
@bhavyachobisa1972 Жыл бұрын
2 nd method was very nice
@satyapalsingh4429
@satyapalsingh4429 2 жыл бұрын
Both the methods are praiseworthy .Thank you ,genius professor !!!
@phileasmahuzier6713
@phileasmahuzier6713 2 жыл бұрын
That is very clever
@mariomestre7490
@mariomestre7490 2 жыл бұрын
Genial. Merci
@team-aops01
@team-aops01 Жыл бұрын
@КатяРыбакова-ш2д
@КатяРыбакова-ш2д 2 жыл бұрын
У меня получилось, что x^5+y^5=0. Сейчас посмотрю видео.
@rzvn104
@rzvn104 2 жыл бұрын
hi
@zainabhusain4076
@zainabhusain4076 2 жыл бұрын
You didn’t even say why you wrote 10 like that. You need not to skip step to get your point across. Be sure to make more clear.
Two Ways to Solve | Bulgarian Mathematics Olympiad
16:22
letsthinkcritically
Рет қаралды 47 М.
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,6 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
A Nice Symmetric System of Equations | Baltic Way 2021
11:49
letsthinkcritically
Рет қаралды 10 М.
Equation on Sum of Powers
7:55
letsthinkcritically
Рет қаралды 9 М.
A Classically Hard Geometry Problem
5:10
MindYourDecisions
Рет қаралды 233 М.
Two Ways to Solve a National Maths Olympiad Problem | India National MO 1990
14:26
Solving This Equation With One Simple Trick
9:00
letsthinkcritically
Рет қаралды 9 М.
Solve 5x^2-6xy+7y^2=383 | Turkey National Mathematical Olympiad 1997
7:15
letsthinkcritically
Рет қаралды 12 М.
A Nice and Symmetric Equation | Polish Mathematical Olympiad Second Round
7:35