Maximum Likelihood - Cramer Rao Lower Bound Intuition

  Рет қаралды 132,909

Ben Lambert

Ben Lambert

Күн бұрын

Пікірлер: 66
@AndrewCarlson005
@AndrewCarlson005 6 жыл бұрын
THIS MAKES SO MUCH SENSE!! Thank you so much for explaining this more clearly in a few minutes than my textbook could do in a few hours!
@Borey567
@Borey567 8 жыл бұрын
I think this small video worth few 2hrs lectures in a university.
@dragosmanailoiu9544
@dragosmanailoiu9544 5 жыл бұрын
lmao true
@123456789arty
@123456789arty 4 жыл бұрын
I just watched a 1 hour lecture about Cramer-Rao Lower Bound and you are totally right :P this was waaay more informative.
@jaymei2532
@jaymei2532 5 жыл бұрын
Like everyone else said, very well explained. I feel way less jittery about this whole entire concept. Thank you in 2019!
@oscarlu9919
@oscarlu9919 4 жыл бұрын
This explanation is excellent. It is crystal clear to explain why is the inverse relationship between variance and second derivative, and why is second derivation, and plus why it is negative! Bravo, Prof.Ben!
@yukew4106
@yukew4106 4 жыл бұрын
Hi Mr. Lambert, I just want to take a moment to thank you for taking the time to make these videos on KZbin. They are very easy to understand and by watching your videos I have been able to understand my statistical theory and bayesian statistics courses more as an undergrad. Thanks a lot and I wish you all the best!
@satltabur4597
@satltabur4597 3 жыл бұрын
In 7m and 59s you explained it better and more clearly than many 2h university lectures combined.
@LongyZ13
@LongyZ13 10 жыл бұрын
Really appreciate videos like this where the aim is to provide an intuitive explanation of the concepts as opposed to going into detail on the maths behind them. Thanks.
@HappehLlama
@HappehLlama 10 жыл бұрын
This was a fantastic intuitive explanation - thank you!
@accountname1047
@accountname1047 2 жыл бұрын
This was my intuition when studying ML estimators in statistics, but never got a straight answer about it from my teachers. Happy to see others think of it through a geometric lens! Great video
@andrewedson7010
@andrewedson7010 4 жыл бұрын
Studying for actuarial exams and the material just throws Fisher Information at you with no context. This will help me understand exactly what we are expected to do in the calculations. Thank you
@Manny123-y3j
@Manny123-y3j 3 жыл бұрын
Damn. You explained this so well. I never have any idea what my professor is talking about, but videos like this help SO MUCH. Thank you!
@ishaansingh1789
@ishaansingh1789 Жыл бұрын
Beautifully explained my friend- intuition is almost always as important as the actual proof itself
@tomthefall
@tomthefall 2 жыл бұрын
this is the best video ive seen on this topic, very well done
@irocmath9727
@irocmath9727 5 жыл бұрын
Wow! This clarifies a good week or two from last year's lectures. I wish I had seen these videos when I was taking the course last year.
@johannaw2031
@johannaw2031 Жыл бұрын
This video makes me very clear about one thing, that I find it strange how hard it obviously is for professors to provide some clear intuition. Why must it be so hard to be pedagogical when you really know something, which I expect a professor does. This is a working day of headache over horrible handouts made understandable in 5 mins.
@mehinabbasova5013
@mehinabbasova5013 9 ай бұрын
This makes so much more sense now, thank you!
@Byc845
@Byc845 4 жыл бұрын
The point of view in curvature is soooo great!
@cecicheng5791
@cecicheng5791 9 жыл бұрын
wow finally get the idea about this relationship between covariance matrix and hessian
@wahabfiles6260
@wahabfiles6260 4 жыл бұрын
so in otherowords the covariance matrix is hessian of maximum likellihood?
@MrYahya0101
@MrYahya0101 3 жыл бұрын
you said we add the negative sign, because the second derivative is negative after a certain value, and the negative sign is added to correct for that negative. what about when the second derivative is positive? doesn't the negative sign make the second derivative negative then? of what use will that be?
@SAGEmania-q8s
@SAGEmania-q8s 5 ай бұрын
Thank you so much. This explains so much.
@jubachoomba
@jubachoomba 3 жыл бұрын
Those tangents illustrate the convexity... Jensen!
@michaelmalone7614
@michaelmalone7614 4 жыл бұрын
Wow, that makes things so much clearer. Thank you.
@leza7584
@leza7584 2 жыл бұрын
This helps so much. very simple explanation
@unnatishukla8513
@unnatishukla8513 2 жыл бұрын
Awesome awesome awesome video....Thankyou so much!
@kimchi_taco
@kimchi_taco 5 жыл бұрын
Kudos man! most intuitive explanation ever!
@fengdai2304
@fengdai2304 4 жыл бұрын
Ben, you are amazing!
@Trubripes
@Trubripes 7 ай бұрын
High curvature -> sharp -> concentrated -> low variance. Makes sense.
@johanjjager
@johanjjager 3 жыл бұрын
Isn't the variance of theta hat also dependent on n, the number of observations which constitute the likelihood function?
@1024Maverick
@1024Maverick 7 жыл бұрын
You just saved my semester (again) GGWP
@jorgebretonessantamarina18
@jorgebretonessantamarina18 8 жыл бұрын
Wonderful video. Thank you very much!
@achillesarmstrong9639
@achillesarmstrong9639 6 жыл бұрын
OK 3 months ago, I thought I understood this video. After I learned more statistic. Now I understand what is going on. I didn't quite understand the concept 3 months ago.
@vitorjung
@vitorjung 4 жыл бұрын
Excellent video, congratulations!
@madhurasutar5332
@madhurasutar5332 4 жыл бұрын
Well explained man!!! Thanks a million 🙏
@coopernfsps
@coopernfsps 8 жыл бұрын
Great video, as always. Helped me out a lot!
@aartisingh1387
@aartisingh1387 Жыл бұрын
Thank you for this video. I have watched this video many times over the years. The simplicity, intuition, visuals, clarity, and ease, are nothing less than brilliant. It has always helped whenever things get fuzzy. Just a small request or a question if you may: Calling vertical axis "likelihood of the data" makes it a bit confusing! Instead, should it not be "likelihood of the parameter" that is L( theta; data). And this "likelihood of the parameter" then happens to be equivalent to f(data|theta)? So, y axis should not be called L(data|theta)?
@pumpkinwang548
@pumpkinwang548 4 жыл бұрын
Thank u Ben, it was quite helpful
@filipposchristou441
@filipposchristou441 7 жыл бұрын
thanks. Good explanation. I guess you saved me hours of searching.
@davidpaganin3361
@davidpaganin3361 6 жыл бұрын
Many thanks, much appreciated!
@hankyang7466
@hankyang7466 5 жыл бұрын
wonderful video, thank you!
@charlesity
@charlesity 7 жыл бұрын
Thank you very much!
@wildboar3170
@wildboar3170 8 жыл бұрын
Hi Ben find your tutorials very easy to follow- thanks. What software are you using? Especially like the coloured pens on black background.
@atfirstiamhuman9183
@atfirstiamhuman9183 6 жыл бұрын
i dont know hat he is using but I sometimes use app.liveboard.online/ . It also allows you to chose different backgrounds for a board and different colors and to livestream your drawing from your tablet/smartphone to PC which i often use as it is better to draw by hand/pen then by mouse.
@lastua8562
@lastua8562 4 жыл бұрын
You can check his website for info.
@alecvan7143
@alecvan7143 5 жыл бұрын
Awesome video!!
@Ekskwkwkwkw2309
@Ekskwkwkwkw2309 3 жыл бұрын
In wich playlist ı can find this topics in a ordered manner
@flo6033
@flo6033 6 жыл бұрын
Thanks, very intuitive. [Subscribed]
@icosum
@icosum 9 жыл бұрын
Excellent many thanks
@lucystruthers7876
@lucystruthers7876 3 жыл бұрын
Hi ben, thank you so much for your videos, i am studying quantitative ecology and do not have a strong mathematical background - your lessons really help! May I ask how the different values of theta are generated (along the x axis)? I assume the MLE expression stays constant and that the parameter estimates vary due to sample variation but in my case I only have one sample. I am a bit confused whether variance of the MLE is actually referring to variance in the parameter estimate due to sampling error. Secondly, in order to calculate the variance, must the 2nd derivative be evaluated for the value of theta which gives the MLE? I hope these questions make sense!
@achillesarmstrong9639
@achillesarmstrong9639 6 жыл бұрын
wonderful video
@nikhiln9887
@nikhiln9887 5 жыл бұрын
great intuitive :)
@archangel5437
@archangel5437 4 жыл бұрын
You da best!
@JanM351531351
@JanM351531351 5 жыл бұрын
Very good.
@samah241
@samah241 8 жыл бұрын
I want to know the meaning of penalized mle
@lastua8562
@lastua8562 4 жыл бұрын
Are you learning that for Machine Learning?
@Adam-de8yi
@Adam-de8yi 10 ай бұрын
My student finance payment should be going to people like you, not these institutions.
@tallyskalynkafeldens1753
@tallyskalynkafeldens1753 5 жыл бұрын
WOW!
@charlesrockhead8900
@charlesrockhead8900 3 жыл бұрын
ily
@safiyakorea6390
@safiyakorea6390 5 жыл бұрын
شكرا و لكن و الله مفهمت 😂😂😂 نتمنى وضع ترجمة لاحقا
@ChristopherThompson-r2z
@ChristopherThompson-r2z 3 ай бұрын
Kane Park
@HopeNicholas-d8p
@HopeNicholas-d8p 3 ай бұрын
Jon Plaza
@BrandonGoetter-n9k
@BrandonGoetter-n9k 3 ай бұрын
Lydia Stream
@bgheyer
@bgheyer 4 жыл бұрын
Thank you so much!
Likelihood ratio test - introduction
6:10
Ben Lambert
Рет қаралды 230 М.
Maximum Likelihood estimation - an introduction part 1
8:25
Ben Lambert
Рет қаралды 637 М.
КОНЦЕРТЫ:  2 сезон | 1 выпуск | Камызяки
46:36
ТНТ Смотри еще!
Рет қаралды 3,7 МЛН
I'VE MADE A CUTE FLYING LOLLIPOP FOR MY KID #SHORTS
0:48
A Plus School
Рет қаралды 20 МЛН
What is Fisher Information?
19:24
Iain Explains Signals, Systems, and Digital Comms
Рет қаралды 22 М.
The Cramer-Rao Lower Bound ... MADE EASY!!!
10:38
Learn Statistics with Brian
Рет қаралды 6 М.
Wald Test - introduction
6:20
Ben Lambert
Рет қаралды 141 М.
The Fisher Information
17:28
Mutual Information
Рет қаралды 70 М.
Intro to Fisher Matrices
13:40
jonathanpober
Рет қаралды 40 М.
In Statistics, Probability is not Likelihood.
5:01
StatQuest with Josh Starmer
Рет қаралды 1,3 МЛН
Introduction to Cramer-Rao Lower Bound
9:51
Timothy Schulz
Рет қаралды 26 М.
12. Die Cramer-Rao Schranke
19:03
Peter Pfaffelhuber
Рет қаралды 735
КОНЦЕРТЫ:  2 сезон | 1 выпуск | Камызяки
46:36
ТНТ Смотри еще!
Рет қаралды 3,7 МЛН