Scattering state solutions to the delta function potential TISE

  Рет қаралды 34,582

Brant Carlson

Brant Carlson

Күн бұрын

Пікірлер: 33
@mlungost
@mlungost 6 жыл бұрын
Just know, in 2018 these slides are still the holy grail for Quantum students
@jasonyao3753
@jasonyao3753 3 жыл бұрын
Just know, in 2021 these slides are still the holy grail for Quantum students
@dreamworld2584
@dreamworld2584 2 жыл бұрын
jst now in 2022 still holy grail
@ya_a_qov2000
@ya_a_qov2000 Жыл бұрын
2023
@rakhuramai
@rakhuramai 10 ай бұрын
@@ya_a_qov2000 2024
@tentrot4420
@tentrot4420 8 ай бұрын
2024 too
@LydellAaron
@LydellAaron Жыл бұрын
Beautiful. 10 years later. Scattering parameters and scattering transmission parameters are fundamental to performing quantum computing. I think it's becoming more understood or accepted, how these same scattering phenomenon can model energy reaction and propagation problems, including human behavior.
@andrewstallard6927
@andrewstallard6927 6 жыл бұрын
Q. Can any initial conditions be expressed as a sum of scattering state solutions? A. Given an infinite number of terms the answer is yes. Q. Explain why the bound state is not possible for the delta function barrier? I think is fairly obvious that if the energy barrier exists only on one side the wave has infinite freedom on the other side. If you have two delta-function barriers than we are back to the particle-in-the-box.
@yasirkhanniazi4462
@yasirkhanniazi4462 8 жыл бұрын
i follow ur lectures nd they r most benificial to me, thanks fr all
@rmenchoachupicachu
@rmenchoachupicachu 9 жыл бұрын
Best explanation by far! Great thank you
@mlungost
@mlungost 6 жыл бұрын
I know right
@JH-if5rv
@JH-if5rv 5 жыл бұрын
Thank you, excellent explanations
@solsticetwo3476
@solsticetwo3476 5 жыл бұрын
I don't get it. Why is not just a free particle when E >0? The analysis looks for me as the one for a delta barrier rather than for a delta well.
@hershyfishman2929
@hershyfishman2929 3 жыл бұрын
This is indeed an unintuative result of quantum mechanics. He discusses this at 19:27
@1ashad1
@1ashad1 4 жыл бұрын
Can anyone help me with just solving for the reflection and transmission coefficients? I am unable to do the basic maths to get the answer (my only concern is i am not able to get rid of 'i' in denominator). Can anyone help? thanks
@timduncankobebryant
@timduncankobebryant 9 жыл бұрын
professor, how come for the general solution, neither of the terms blow up?. One of the coeffs should be zero right?
@rmenchoachupicachu
@rmenchoachupicachu 9 жыл бұрын
+timduncankobebryant These terms are representations of Euler's identity. You basically get sin and cos terms instead of exponentials.
@hershyfishman2929
@hershyfishman2929 3 жыл бұрын
For E0 the solutions have i in the exponents, so they just rotate forever in the complex plane.
@jonelreidmanuel
@jonelreidmanuel 6 жыл бұрын
thank you so much for this.
@EmmanuelMlambani
@EmmanuelMlambani 9 жыл бұрын
That's excellent
@abhasoodan7982
@abhasoodan7982 3 жыл бұрын
why do we have iota in the solution of scattering states but not in bound states?
@hershyfishman2929
@hershyfishman2929 3 жыл бұрын
When E0 (scattering), -2mE/ℏ is negative, so the differential equation is ψ'' = -k^2ψ. The solution to such differential equations has i (taking the derivative of e^ikx twice will give you -k^2(e^ikx) and similarly for e^-ikx)
@timetraveller1237
@timetraveller1237 8 жыл бұрын
why is it that in this lecture brant did not cancel the exponential powers which blow up to infinity like in the last lecture
@juhokupiainen5515
@juhokupiainen5515 8 жыл бұрын
These solutions are free particle solutions (the slight difference of having imaginary numbers in the exponent ). Look back a few lectures. You normalize them by creating a wave packet.
@timetraveller1237
@timetraveller1237 8 жыл бұрын
ooh so are you saying that because of the term "i" it is essentially just a complex rotation but in the previous lectures the missing "i" meant the solutions blew up so it is not necessary to cancel it for free particle. and for your second part i don't really understand the notion of wave packet and how that relates to Fourier transforms and how that helps us to normalize them but thanks anyways if i got what you said correctly if not please do feel free to correct me thanks anyways it has been bugging me for a long time!!!
@arunkancharla4455
@arunkancharla4455 7 жыл бұрын
if we expand e^ikx=cos(kx)+i*sin(kx) , the sine and cosine are finite for any value of x.
@ENetArch
@ENetArch 2 ай бұрын
How did you reduce f - g = a (1+ 2iq) - b (1 - 2iq) ???
@ENetArch
@ENetArch 2 ай бұрын
If you substitute the values that F and B equal into the equation, while setting g = 0, you get A = A. I'm trying to walk forwards now to the answer.
@ENetArch
@ENetArch 2 ай бұрын
set g = 0 Recall that F + B = A .. where A is the incident amplitude, and F and B are the reflection and transmission amplitudes. F is some percentage of A, or ( F = A (%)) while B is the remainder of the percentage (B = A (1 - %)). A = 100% B = A % F = A (1 - %) F / (1 -%) = A B / % = A F / (1 - %) + B / % = A F (%) / (1 - %) % + B (1 - %) / % (1 - %) = A F (1 - %) + B % = A % (1 - %) === B = iq / (1 - iq) F = 1 / (1 - iq) B + F = (1 + iq) / (1 - iq) = 1 or A === F = A (1 + 2iq) - B (1 -2iq) subtract b from the left and add b to the right F + B (1 -2iq) = A (1 + 2iq) divide both sides by (1 - 2iq) [ F + B (1 -2iq) ] / (1 + 2iq) = A times the left side by (1 + iq) / (1 - iq) [ F + B (1 -2iq) ] (1 + iq) / [ (1 - iq) (1 + 2iq) ] = A Distribute (1 + iq) [ F (1 + iq) + B (1 + iq) (1 -2iq) ] / [ (1 - iq) (1 + 2iq) ] = A === % = (1 + iq) (1 - %) = (1 - 2 iq) 1 / % = (1 - iq) 1 / (1 - %) = 1 / (1 + 2 iq) === [ F % + B % (1 - %) ] / [ % (1 - %) ] = A B = A % F = A (1 - %) B = A (1 + iq) F = A (1 - 2 iq)
@taibilimunduan
@taibilimunduan 5 жыл бұрын
quantically, well = wall!
@xinzeng-iq7zv
@xinzeng-iq7zv 8 ай бұрын
is this guy a dentist on some naruto shit
Finite square well bound states
24:32
Brant Carlson
Рет қаралды 88 М.
The bound state solution to the delta function potential TISE
18:51
Brant Carlson
Рет қаралды 47 М.
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Delta function potential I: Preliminaries
16:04
MIT OpenCourseWare
Рет қаралды 48 М.
Stationary solutions to the Schrodinger equation
19:24
Brant Carlson
Рет қаралды 45 М.
Determining the SCATTERING STATES for the delta potential well
28:22
Nick Heumann University
Рет қаралды 3,4 М.
Scattering states and the step potential
10:35
MIT OpenCourseWare
Рет қаралды 41 М.
Particle in a Box Part 1: Solving the Schrödinger Equation
16:35
Professor Dave Explains
Рет қаралды 344 М.
Bound states, scattering states, and tunneling
16:39
Brant Carlson
Рет қаралды 59 М.
Delta function potential I: Solving for the bound state
15:21
MIT OpenCourseWare
Рет қаралды 37 М.
The Dirac delta function
27:01
Brant Carlson
Рет қаралды 118 М.
Determining the BOUND STATES for the Delta function potential
31:55
Nick Heumann University
Рет қаралды 8 М.
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН