Just know, in 2018 these slides are still the holy grail for Quantum students
@jasonyao37533 жыл бұрын
Just know, in 2021 these slides are still the holy grail for Quantum students
@dreamworld25842 жыл бұрын
jst now in 2022 still holy grail
@ya_a_qov2000 Жыл бұрын
2023
@rakhuramai10 ай бұрын
@@ya_a_qov2000 2024
@tentrot44208 ай бұрын
2024 too
@LydellAaron Жыл бұрын
Beautiful. 10 years later. Scattering parameters and scattering transmission parameters are fundamental to performing quantum computing. I think it's becoming more understood or accepted, how these same scattering phenomenon can model energy reaction and propagation problems, including human behavior.
@andrewstallard69276 жыл бұрын
Q. Can any initial conditions be expressed as a sum of scattering state solutions? A. Given an infinite number of terms the answer is yes. Q. Explain why the bound state is not possible for the delta function barrier? I think is fairly obvious that if the energy barrier exists only on one side the wave has infinite freedom on the other side. If you have two delta-function barriers than we are back to the particle-in-the-box.
@yasirkhanniazi44628 жыл бұрын
i follow ur lectures nd they r most benificial to me, thanks fr all
@rmenchoachupicachu9 жыл бұрын
Best explanation by far! Great thank you
@mlungost6 жыл бұрын
I know right
@JH-if5rv5 жыл бұрын
Thank you, excellent explanations
@solsticetwo34765 жыл бұрын
I don't get it. Why is not just a free particle when E >0? The analysis looks for me as the one for a delta barrier rather than for a delta well.
@hershyfishman29293 жыл бұрын
This is indeed an unintuative result of quantum mechanics. He discusses this at 19:27
@1ashad14 жыл бұрын
Can anyone help me with just solving for the reflection and transmission coefficients? I am unable to do the basic maths to get the answer (my only concern is i am not able to get rid of 'i' in denominator). Can anyone help? thanks
@timduncankobebryant9 жыл бұрын
professor, how come for the general solution, neither of the terms blow up?. One of the coeffs should be zero right?
@rmenchoachupicachu9 жыл бұрын
+timduncankobebryant These terms are representations of Euler's identity. You basically get sin and cos terms instead of exponentials.
@hershyfishman29293 жыл бұрын
For E0 the solutions have i in the exponents, so they just rotate forever in the complex plane.
@jonelreidmanuel6 жыл бұрын
thank you so much for this.
@EmmanuelMlambani9 жыл бұрын
That's excellent
@abhasoodan79823 жыл бұрын
why do we have iota in the solution of scattering states but not in bound states?
@hershyfishman29293 жыл бұрын
When E0 (scattering), -2mE/ℏ is negative, so the differential equation is ψ'' = -k^2ψ. The solution to such differential equations has i (taking the derivative of e^ikx twice will give you -k^2(e^ikx) and similarly for e^-ikx)
@timetraveller12378 жыл бұрын
why is it that in this lecture brant did not cancel the exponential powers which blow up to infinity like in the last lecture
@juhokupiainen55158 жыл бұрын
These solutions are free particle solutions (the slight difference of having imaginary numbers in the exponent ). Look back a few lectures. You normalize them by creating a wave packet.
@timetraveller12378 жыл бұрын
ooh so are you saying that because of the term "i" it is essentially just a complex rotation but in the previous lectures the missing "i" meant the solutions blew up so it is not necessary to cancel it for free particle. and for your second part i don't really understand the notion of wave packet and how that relates to Fourier transforms and how that helps us to normalize them but thanks anyways if i got what you said correctly if not please do feel free to correct me thanks anyways it has been bugging me for a long time!!!
@arunkancharla44557 жыл бұрын
if we expand e^ikx=cos(kx)+i*sin(kx) , the sine and cosine are finite for any value of x.
@ENetArch2 ай бұрын
How did you reduce f - g = a (1+ 2iq) - b (1 - 2iq) ???
@ENetArch2 ай бұрын
If you substitute the values that F and B equal into the equation, while setting g = 0, you get A = A. I'm trying to walk forwards now to the answer.
@ENetArch2 ай бұрын
set g = 0 Recall that F + B = A .. where A is the incident amplitude, and F and B are the reflection and transmission amplitudes. F is some percentage of A, or ( F = A (%)) while B is the remainder of the percentage (B = A (1 - %)). A = 100% B = A % F = A (1 - %) F / (1 -%) = A B / % = A F / (1 - %) + B / % = A F (%) / (1 - %) % + B (1 - %) / % (1 - %) = A F (1 - %) + B % = A % (1 - %) === B = iq / (1 - iq) F = 1 / (1 - iq) B + F = (1 + iq) / (1 - iq) = 1 or A === F = A (1 + 2iq) - B (1 -2iq) subtract b from the left and add b to the right F + B (1 -2iq) = A (1 + 2iq) divide both sides by (1 - 2iq) [ F + B (1 -2iq) ] / (1 + 2iq) = A times the left side by (1 + iq) / (1 - iq) [ F + B (1 -2iq) ] (1 + iq) / [ (1 - iq) (1 + 2iq) ] = A Distribute (1 + iq) [ F (1 + iq) + B (1 + iq) (1 -2iq) ] / [ (1 - iq) (1 + 2iq) ] = A === % = (1 + iq) (1 - %) = (1 - 2 iq) 1 / % = (1 - iq) 1 / (1 - %) = 1 / (1 + 2 iq) === [ F % + B % (1 - %) ] / [ % (1 - %) ] = A B = A % F = A (1 - %) B = A (1 + iq) F = A (1 - 2 iq)