sqrt2, sqrt5 and sqrt7 cannot be terms of the same geometric progression.

  Рет қаралды 2,224

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер
@GreenMeansGOF
@GreenMeansGOF 8 сағат бұрын
It’s important to note that n and m are not zero since the roots on the middle board are not 1. Thus, we DO have odd equals even and not 1=1.
@jokou8223
@jokou8223 3 сағат бұрын
He notes that i != j != k and m = j - i , n = k - j so m and n cant be 0
@assiya3023
@assiya3023 8 сағат бұрын
متألق كالعادة شكرا أستاذ
@BartBuzz
@BartBuzz 45 минут бұрын
The logic of math is always satisfying.
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 6 сағат бұрын
You’re an awesome teacher!
@ruud9767
@ruud9767 4 сағат бұрын
Next problem would be: A geometric progression never contains three primes.
@padla6304
@padla6304 5 сағат бұрын
твёрдое доказательство, простое для понимания и усвоения! мой лайк каналу
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 6 сағат бұрын
Sqrt[5/2]=r^m, Sqrt[7/5]=r^n
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 6 сағат бұрын
Prove that Sqrt[2],Sqrt[5],Sqrt[7] cannot be in the same geometric progression. You can’t Square root any prime number and expect a rational number back.
@FunkyTurtle
@FunkyTurtle 6 сағат бұрын
I don't think geometric progressions require a rational number. 1, sqrt(2), 2, 2sqrt(2), 4...
@dan-florinchereches4892
@dan-florinchereches4892 6 сағат бұрын
I think we can simply consider the possibility of a geometric progression containing theses values so Let a=√2 , √5=a*r^m and √7=a*r^(m+n) where m and n are positive integers Then it results by division that: r^m=√(5/2) and √(7/5)=r^n So r=(5/2)^(1/2*1/m)=(7/5)^(1/2*1/n) raising to the power 2mn : (5/2)^n=(7/5)^m 5^(m+n)=2^n*7^m which is impossible for m and n integers because 2,7 and 5 are relatively prime so the hypothesis was wrong So by reducing to absurd the original statement is false
@AmilQarayev41
@AmilQarayev41 4 сағат бұрын
where is the 3rd way of the integral?
@jay_sensz
@jay_sensz 7 сағат бұрын
If sqrt(a), sqrt(b), and sqrt(c) are part of a geometric sequence with ratio r, it's easy to show that so are a, b, and c (with ratio r²) and vice versa. So the square roots in the problem statement aren't really relevant and just make it slightly more tedious.
@Modo942000
@Modo942000 5 сағат бұрын
I believe there's another way to prove the contradiction other than checking parity. 2, 5, and 7 are prime numbers. The form that was given is similar to prime factorization Since a single number cannot have two different sets of prime factors, it shows the contradiction
@sr6424
@sr6424 8 сағат бұрын
A question- why did you use ‘i’ when you substituted? If it was me I’d steer clear of ‘i’ When you deal with square roots imaginary numbers can come into play. In similar proofs, although not this one, it could be confusing. Most mathematicians do it!
@LovePullups
@LovePullups 3 сағат бұрын
i Is often used as index
@sr6424
@sr6424 3 сағат бұрын
@ I also find that confusing.
@craig4320
@craig4320 2 сағат бұрын
Thought provoking.
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 6 сағат бұрын
Sqrt[5/2]=0.5Sqrt[10]
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 6 сағат бұрын
r^j/r^i=r^(j-i)
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 6 сағат бұрын
r^k/r^j=r^(k-j)
@andrejflieger4182
@andrejflieger4182 5 сағат бұрын
Great Video, I probably would not use i since it could lead to confusion since i also indicates complex numbers ❤😊
@frreinov
@frreinov 3 сағат бұрын
That was great
@IITIAN_dost
@IITIAN_dost 9 сағат бұрын
First drop from IIT bombay student 😊
@peshepard412
@peshepard412 6 сағат бұрын
a sub n =a sub1*r^ (n-1) no?
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 6 сағат бұрын
Sqrt[7/5]=0.2Sqrt[35]
Where did this come from?
20:10
Prime Newtons
Рет қаралды 20 М.
Square-root of a matrix
13:51
Prime Newtons
Рет қаралды 36 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
Find the limit
10:11
Prime Newtons
Рет қаралды 11 М.
Integrate 1/(1+x^3)
24:56
Prime Newtons
Рет қаралды 55 М.
n^4 + 3n^2 + 2 is never a perfect square
17:08
Prime Newtons
Рет қаралды 10 М.
a! b! = a! + b! + c!
14:38
Prime Newtons
Рет қаралды 12 М.
A long road to the limit
21:24
Prime Newtons
Рет қаралды 10 М.
Find the closest integer
14:57
Prime Newtons
Рет қаралды 15 М.
Integrate 1(1+x^4) using Method 1
16:41
Prime Newtons
Рет қаралды 20 М.
A Vieta Problem
16:43
Prime Newtons
Рет қаралды 10 М.
Prove a^2 + b^2 + c^2  is at least ab + bc + ca for real numbers
6:05
Find P(x)
15:07
Prime Newtons
Рет қаралды 17 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН