Sum of the digits of 111111111^2

  Рет қаралды 13,999

Prime Newtons

Prime Newtons

Күн бұрын

This is a fun trick shortcut to finding the sum of the digits of the square of a number with omly 1 as digits.

Пікірлер: 77
@vasiledumitrescu9555
@vasiledumitrescu9555 Ай бұрын
4:25, bro stared directly into my soul
@PrimeNewtons
@PrimeNewtons Ай бұрын
Lol. I was waiting for the train to pass. I clipped that part out.
@amritsharmapoudel959
@amritsharmapoudel959 Ай бұрын
You should not have clipped that. It was funny and interesting at the same time.
@sr6424
@sr6424 Ай бұрын
Happy New Year from Birmingham England. Last year I put on puzzle evenings in a local bar. Mainly mathematical and logical problems - although I had to put in a couple of word puzzles! Your videos inspired me! You make maths fun! I did it too, but not as well as you! This puzzle would have been great!
@jpl569
@jpl569 Ай бұрын
Very nice « brute force » explanation !! I love it ! Maybe you will like the « pure algebra » approach : Let X = 111…1 with n digits, then X = ∑ 10^j for 0 ≤ j ≤ n-1. And X^2 = ∑ 10^j 10^k for 0 ≤ j ≤ n-1 and 0 ≤ k ≤ n-1. Just count the number of powers of 10 in X^2 (including 10^0) : there are exactly n^2. This is also the sum of all digits in X^2 ! Thanks for your interesting videos. 😊
@jpl569
@jpl569 Ай бұрын
An other way is to define P (t) = ∑ t^k for 0 ≤ k ≤ n-1, and S (X) as the sum of the digits of X. Then evidently X = P (10), and S (X) = P (1) = n. So : X^2 = P^2 (10), and S (X^2) = P^2 (1) = n^2. And : for all q € N, X^q = P^q (10), and S (X^q) = P^q (1) = n^q. 🙂
@zanti4132
@zanti4132 Ай бұрын
When you multiply 111,111,111 by 111,111,111, you know each row will be 111111111, for which the sum of the digits add up to 9, and there will be nine rows. So, 9 × 9 = 81. The only detail to consider in whether the calculation ever requires a carry, but with there being nine rows and with each digit never being larger than 1, it's clear carrying will never come into play. So 81 has to be the answer.
@njugunawanyoike146
@njugunawanyoike146 Ай бұрын
Genius approach there. I believe all challenging math problems always has a hidden pattern that should be determined to solve the problem. That the beauty of math.
@srisaishravan5512
@srisaishravan5512 Ай бұрын
Thanks for uploading sir! Your videos are the best
@hazevthewolf178
@hazevthewolf178 Ай бұрын
As a railfan, I love how you patiently wait for the passing train to go by. Yes, rep-unit numbers can be rather interesting. For fun, a little algebra... n(n + 1) / 2 + n(n - 1) / 2 = (n / 2)((n +1) + (n - 1)) = 2n(n / 2) = n^2
@wisdomokoro8898
@wisdomokoro8898 Ай бұрын
I did that mentally 😅
@jay_13875
@jay_13875 Ай бұрын
Write the number k=111111111 as p(x) = 1+x+x^2+...+x^8 evaluated at x = 10. Note that the sum of digits of k is p(1)=9. Then k^2 is p(x)^2 evaluated at x=10. As long as all the coefficients of the expanded polynomial p(x)^2 are less than 10, we can find the sum of digits of k^2 by evaluating p(1)^2 = 9^2 = 81.
@bijayakumarnanda8636
@bijayakumarnanda8636 Ай бұрын
Excellent teaching 🎉
@Nature-Melody2106
@Nature-Melody2106 Ай бұрын
Happy New Year, sir ❤🎊🎆
@Abby-hi4sf
@Abby-hi4sf Ай бұрын
Happy New year Prime Newton!
@ricardoguzman5014
@ricardoguzman5014 Ай бұрын
Recreational math is fun. I thought of a problem a couple months or so ago that is the type that you do on this channel. Find N such that N+1 is a square and 2N+1 is a square. If you're up to it. Happy New Year.
@jpl569
@jpl569 Ай бұрын
Happy New Year to Prime Newtons !
@PrimeNewtons
@PrimeNewtons Ай бұрын
Happy New Year
@DeathSugar
@DeathSugar Ай бұрын
Weird things begin to happen when there are 10+ digits multiplied. It start to lose eights, and symmetry from right side shifts
@AndrewCWSoh
@AndrewCWSoh Ай бұрын
I would like to see some problems on Vectors, and Matrices. Thanks
@yajupatel6181
@yajupatel6181 Ай бұрын
I got this exact question in a comp test last week and it shows up after I got it wrong :( Happy new year from India ❤
@RobG1729
@RobG1729 Ай бұрын
At least once you say "number" when "digit" is more accurrate. Your videos are so instructive that I check for new lessons nearly every day.
@glorrin
@glorrin Ай бұрын
Great video, But every time I see a cool new trick I want to learn why does it work ? And I believe this one is easy to show, let's say A=1....1 has n+1 digits with 1
@AmilQarayev41
@AmilQarayev41 Ай бұрын
Happy New Year. INTEGRAL.
@wannabeactuary01
@wannabeactuary01 Ай бұрын
Happy new year too!
@ErickOliveira-i3w
@ErickOliveira-i3w Ай бұрын
Happy new year from Brazil, what a fun question!
@thomazsoares1316
@thomazsoares1316 Ай бұрын
Achava que eu era o único br que assistia os vídeo dele, mas fala a verdade: ele ensina bem, não?
@edilon619
@edilon619 Ай бұрын
@@thomazsoares1316Eu também assisto.
@ErickOliveira-i3w
@ErickOliveira-i3w Ай бұрын
@@thomazsoares1316 muito bem
@Ali-i9c2y
@Ali-i9c2y Ай бұрын
Happy New Year from Indonesia 🇮🇩
@Wilhelm-mg1jf
@Wilhelm-mg1jf Ай бұрын
Nice one, it kind of remembered me of Paschal's triangle.
@AyooTube
@AyooTube Ай бұрын
The day 1 of the month 1, is a great day to multiply 1 by 1 like 1111111111111 times... Hahahahah Happy new year, everybody!
@AubreyForever
@AubreyForever 17 күн бұрын
I thought you had merchandise for sale?
@PrimeNewtons
@PrimeNewtons 17 күн бұрын
I did, but they were not delivering promptly, so I removed the store link. I will reassess and make it available soon if meaningful.
@EndingNote111
@EndingNote111 23 күн бұрын
beautiful
@kragiharp
@kragiharp Ай бұрын
Hi! I read a book a long time ago: Vedic Mathematics. There every calculation is checked by doing the exact calculation of the problem with the sum of the digits. You have to get the same answer. So I just count the 1s -> 9. 9^2 = 81. Finished. Although I have never seen a proof that this method always is correct. In case someone knows, please tell me. ❤️🙏
@bjorntorlarsson
@bjorntorlarsson Ай бұрын
Perhaps not in your taste, but I'd suggest that you do more "mental arithmetics". Going for the primes 7 up. How come the inverse of each prime 7 and larger have a repeating sequence of digitals the length of which is one less than the prime? (Except for 13, unless as if by coincident the other half of the twelve digits happens to be the same as the first half). That the digits of an inverse prime add up to 9's is of course the clue. It has to do with the base ten, doesn't it? 1/7=0.142857... and first half of it plus the second half is 142+857=999. Same for the inverse of ALL primes, if we forget about the very broken figures 2, 3, 5.
@marcclaude2065
@marcclaude2065 Ай бұрын
Fun!
@VictorTeachesMath
@VictorTeachesMath 29 күн бұрын
bro keeps staring into my soul
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs Ай бұрын
Sum of digits 111111111^2=81 final answer 111111111^2=12345678987654321 It’s in my head.
@alphazero339
@alphazero339 Ай бұрын
Ye we know everythings in ur ass
@DavyCDiamondback
@DavyCDiamondback Ай бұрын
Easier! For 1.....1 * 1.....1 for m and n digits, the sum of the digits is m *n for m < 10 or n < 10 (clearly, you have a rectangle of 1s to add up)... So the answer is 81
@Ijkbeauty
@Ijkbeauty 14 күн бұрын
we get it bro its in your head
@artandata
@artandata Ай бұрын
more about the ten one digits square number 111111111^2 * surprisingly the sum of digits is 82 that means only one unit more than 9^2 * number of divisors is 81, one less of its sum of digits * can be factorized as 11^2 × 41^2 × 271^2 × 9091^2 * and of course is a perfect square Have a Nice & Happy New Year ! (for you and the community. regards from Brazil)
@HeckYeahRyan
@HeckYeahRyan Ай бұрын
i remember playing with my calculator and seeing a pattern by doing 11^2 or 1111^2 and i realised each digit will just be counting from 1 to the number of ones and then counting back so 111111111^2=12345678987654321
@ivanhorbenko7529
@ivanhorbenko7529 Ай бұрын
Here comes the beauty of numbers. Nice 😊
@itsphoenixingtime
@itsphoenixingtime Ай бұрын
i remember that fact about 111,111,111 x 111,111,111 =12345678987654321 Then you can pair all the digits up adding to 9, get 9 9's and that's 81.
@thomazsoares1316
@thomazsoares1316 Ай бұрын
Make a video showing the result of sum(n!/nⁿ) for n=1
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs Ай бұрын
Excellent math skills.
@adgf1x
@adgf1x Ай бұрын
45+36=81
@maribelle7626
@maribelle7626 Ай бұрын
happy new year 🎉
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs Ай бұрын
1^2=1 11^2=121 111^2=12321 1111^2=1234321
@vinhxnoobx
@vinhxnoobx Ай бұрын
Huh i still dont understand the part 2,3,4 and they ^ 😢
@Dr_piFrog
@Dr_piFrog Ай бұрын
Easy ==> 81
@MrJPI
@MrJPI Ай бұрын
I did it in my head in less than one minute! Oh yeah! 😅
@nigerianprinceajani
@nigerianprinceajani Ай бұрын
111111111² = 111111111 + 1111111110 + 11111111100 + ... + 111111111000000000 = 12345678987654321 so the sum of the digits is 2*8*9/2 + 9 = 9*9 = 81 (using Gauss' sum formula for the sum of 1 + 2 + ... + 7 + 8).
@ishantagarwal1082
@ishantagarwal1082 Ай бұрын
Happy new year, Newton! Btw, did you know that 2025 is the summation of n³ upto n=9? 2025 = 45² = (1+2+3+...+9)²=(1³+2³+3³+...+9³) That means the next time this will occur will be the year 3025, a thousand years from now!
@vnms-
@vnms- Ай бұрын
If you go above 9 digits then the sum of digits is 81+(n-9)^2 where n is the number of digits
@zanti4132
@zanti4132 29 күн бұрын
@@vnms- That's only true for 10 ≤ n ≤ 18. For 19 ≤ n ≤ 27, the formula is 162 + (n - 18)². You can generalize this for any n > 0 as: Let k = f{n/9}, where f{x} denotes the largest integer < x. Then the formula is: 81k + (n - 9k)²
@dbzsongs2474
@dbzsongs2474 Ай бұрын
81
@mskiptr
@mskiptr Ай бұрын
9*9
@VictirHds
@VictirHds Ай бұрын
Sum of digits is 25
@zerosir1852
@zerosir1852 Ай бұрын
What about 111111111³, 111111111⁴, 111111111⁵, 111111111⁶, .....
@priyanshsrivastava3571
@priyanshsrivastava3571 Ай бұрын
81 , did it without pen , just by a trick of getting the square of given type of numbers
@DragonX999
@DragonX999 Ай бұрын
What is the Lim ((sinx)!-1)/x) x->0
@bjorntorlarsson
@bjorntorlarsson Ай бұрын
Limb the Sinx, and arrow that ring in the middle of the paper here. My sergeant ChatGPT says when it is drunk at the shooting range.
@jbasanth4896
@jbasanth4896 Ай бұрын
Mm,i tried... As usual , like using the Taylor series or Maclaurian series. Sin(x) =x, when x approaches zero. And since x is small, sin(x) ! Must be small. By using this, Sin(x) ! =0 So, the equation will become, (1-1) /0, the limit does not exist on that point I don't know whether it's a valid proof.
@DragonX999
@DragonX999 Ай бұрын
@@jbasanth4896 uhmm ur logic for sinx = x is right but then (sinx)! or (x)! = 0! Which is 1
@jbasanth4896
@jbasanth4896 Ай бұрын
@@DragonX999 oops, i forgot that, ok, i will edit it
@jbasanth4896
@jbasanth4896 Ай бұрын
@@DragonX999 i have another solution, Same, sin(x) =x, The equation will become (x! -1) /x, use L'Hospital's rule, d/dx x! =x!ψ(x), where ψ(x) is digamma function Now, Lim x! ψ(x) =0! ψ(0) x→0 Where ψ0) =-γ which is, -0. 5772
Solving a Quartic Equation
17:08
Prime Newtons
Рет қаралды 120 М.
Find all positive integer n
16:49
Prime Newtons
Рет қаралды 34 М.
And what’s your height? 😁 @karina-kola
00:10
Andrey Grechka
Рет қаралды 52 МЛН
哈莉奎因被吓到了#Cosplay
00:20
佐助与鸣人
Рет қаралды 32 МЛН
The 7 Levels of Math Symbols
14:03
The Unqualified Tutor
Рет қаралды 144 М.
Solving a septic equation
10:43
Prime Newtons
Рет қаралды 70 М.
Sum from 1 to infinity of 1/(k^2+1)
7:16
mathemagical
Рет қаралды 8 М.
Funny Math Shirt Explained
4:05
Andy Math
Рет қаралды 655 М.
The strange cousin of the complex numbers -- the dual numbers.
19:14
Every Proof that 0.999 equals 1 but they get increasingly more complex
17:42
Find all natural numbers satissfying the equation
12:25
Prime Newtons
Рет қаралды 40 М.
Oxford Admission Test - Find the value of x
10:39
Math Queen
Рет қаралды 977 М.