Summing An Interesting Infinite Series

  Рет қаралды 2,647

SyberMath

SyberMath

Күн бұрын

Пікірлер: 10
@yurenchu
@yurenchu 8 күн бұрын
It seems to me the answer at the end is incorrect. The correct answer would be (1/3)*[ ln(2) + *2* * (√3)*arctan(1/√3) ] . Because at 4:30 , the RHS was integrated from x=0 to x=1 , and therefore, the LHS must also be integrated from x=0 to x=1 . EDIT: I just asked Wolfram Alpha, and Wolfram Alpha agrees with me: 1 - 1/4 + 1/7 - 1/10 + ... = (1/9)*( √3 π + 3*ln(2) ) ≈ 0.83565 which means the series is equal to (1/3)*ln(2) + (1/3)*(√3)*(π/3) = = (1/3)*[ ln(2) + (√3)*arctan(√3) ] = (1/3)*[ ln(2) + (√3)*2*arctan(1/√3) ]
@bobbyheffley4955
@bobbyheffley4955 9 күн бұрын
The series obtained by taking the absolute value of the given series diverges. The original series is conditionally convergent.
@reconquistahinduism346
@reconquistahinduism346 9 күн бұрын
Scientific calculator pegs the value at 0.3.....
@meurdesoifphilippe5405
@meurdesoifphilippe5405 9 күн бұрын
Arctan(1/sqrt(3))... you mean pi/6?
@SyberMath
@SyberMath 8 күн бұрын
Yes
@scottleung9587
@scottleung9587 9 күн бұрын
Nice!
@SyberMath
@SyberMath 8 күн бұрын
Thanks!
@RealQinnMalloryu4
@RealQinnMalloryu4 8 күн бұрын
(1)^2 (1)^2/(16)=1 ➖ 1/16 ={0+0 ➖ }/16={1n+1n ➖}/{16n+16n ➖}+{1n+1n ➖}/{7n+7n ➖ }={2n^2/32n^2+2n^2/14n^2}=4n^4/46n^4 ➖ (1)^2/(10)^2={4n^4/46n^4 ➖ 1/100}=3n^4/64n^4+{1n+1n ➖}/{13n+13n ➖}={3n^4/64n^4+2n^2/26n^2 }=5n^6/90n^6 ➖ (1)^2/(16)^2={5n^6/90n^6 ➖ 1/256}=4n^6/166n^6+{1n+1n ➖}/{19n+19n ➖ }={4n^6/166n^6+2n^2/38n^2}=6n^8/204n^8 6n^8/38^166n^8 63^3n^2^3/1^3^3^3^3n^2^3 1^1n^1^1^1/1^1^1^1^3n^1^1^2 /1^3n^1^2 /3n^2 (n ➖ 3n+2).
@blabberblabbing8935
@blabberblabbing8935 8 күн бұрын
How are 1/(1+x^3) or (-x)^(3n) even related to (-1)^n/(1+3n)? 🤔
A Deceivingly Difficult Differential Equation
11:03
SyberMath
Рет қаралды 2,7 М.
Andro, ELMAN, TONI, MONA - Зари (Official Music Video)
2:50
RAAVA MUSIC
Рет қаралды 2 МЛН
Summing An Interesting Infinite Series
9:33
SyberMath
Рет қаралды 2,2 М.
Pi hiding in prime regularities
30:42
3Blue1Brown
Рет қаралды 2,6 МЛН
Ranking Paradoxes, From Least to Most Paradoxical
25:05
Chalk Talk
Рет қаралды 82 М.
An Interesting Radical Expression
8:55
SyberMath
Рет қаралды 2,3 М.
Why There's 'No' Quintic Formula (proof without Galois theory)
45:04
not all wrong
Рет қаралды 556 М.
The strange cousin of the complex numbers -- the dual numbers.
19:14
Something Strange Happens When You Keep Squaring
33:06
Veritasium
Рет қаралды 8 МЛН
How to Take the Factorial of Any Number
26:31
Lines That Connect
Рет қаралды 1,3 МЛН
An Interesting System of Differential Equations
8:41
SyberMath
Рет қаралды 1,2 М.