Supercharging Your RAG System: Techniques and Challenges // Tengyu Ma // DE4AI

  Рет қаралды 301

MLOps.community

MLOps.community

Күн бұрын

//Abstract
Retrieval-augmented generation is the predominant way to ingest proprietary unstructured data into generative AI systems. First, I will briefly state my view on the comparison between RAG and other competing paradigms such as finetuning and long-context LLMs. Then, I will briefly introduce embedding models and rerankers, two key components responsible for the retrieval quality. I will then discuss a list of techniques for improving the retrieval quality, such as query generation/decomposition and proper evaluation methods. Finally, I will discuss some current challenges in RAG and possible future directions.
//Bio
Co-founder & CEO of Voyage AI
Assistant Professor of Computer Science at Stanford University
A big thank you to our Premium Sponsors ‪@Databricks‬, ‪@tecton8241‬, & ‪@onehouseHQ‬for their generous support!

Пікірлер
No Priors Ep. 67 | With Voyage AI Co-Founder and CEO
36:20
No Priors: AI, Machine Learning, Tech, & Startups
Рет қаралды 4,2 М.
Jeroen Overschie - The Levels of RAG 🦜
34:43
PyData
Рет қаралды 1 М.
За кого болели?😂
00:18
МЯТНАЯ ФАНТА
Рет қаралды 2 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 31 МЛН
Ads Recommender System (RecSys) Workshop by ShareChat
2:45:20
Life At ShareChat
Рет қаралды 1,5 М.
Top Minds in AI Explain What’s Coming After GPT-4o | EP #130
25:30
Peter H. Diamandis
Рет қаралды 96 М.
What is Agentic RAG?
5:42
IBM Technology
Рет қаралды 24 М.
The Future Of AI Agents With Dharmesh Shah | INBOUND 2024
29:38
LangChain vs LangGraph: A Tale of Two Frameworks
9:55
IBM Technology
Рет қаралды 24 М.
AI Agent Evaluation with RAGAS
19:42
James Briggs
Рет қаралды 15 М.