I appreciate your efforts to make up these equations :)
@raymondarata6549 Жыл бұрын
Because the r.h.s. is sqrt(10)/2, x = 1/2 is a logical possible answer. In your video, you showed that sqrt(10)/2 = sqrt(5/2). Simply set 1 + 1/x = 5/2. Multiply both sides by x and then multiply both sides by 2 to get 2x^2 - 5x + 2 = 0. Solve it by factoring. You get (2x - 1)(x - 2) = 0 so x = 1/2 or 2. You check each answer and find that x = 2 is extraneous and x = 1/2 works! Knowing that the function on the l.h.s. is monotonic, you can be sure that x = 1/2 is the only solution.
@maxborn7400 Жыл бұрын
math olympiad gigabrains right here
@popitripodi573 Жыл бұрын
I loved it❤❤❤brilliant!!!
@SyberMath Жыл бұрын
Thank you! ❤❤❤
@mehrdadbasiri9968 Жыл бұрын
Perfect...👍👍👍.
@SyberMath Жыл бұрын
Thanks 🤩
@scottleung9587 Жыл бұрын
Nice!
@vladimirkaplun5774 Жыл бұрын
An infinite source of the kitchen made equations. Replace 1/2 with 1/3 and another video is ready.
@SyberMath Жыл бұрын
Thanks for the idea! 😜😍😉
@mcwulf25 Жыл бұрын
That was pretty much guess-and-check. Of course the essential bit is showing it's the only solution.
@vbeckerlima Жыл бұрын
What program do you use to make the resolution?
@giordanociccoli Жыл бұрын
its called desmos
@carly09et Жыл бұрын
nominalise the root to root(5/2). Then x as 1/2 is the trivial [(1/2) + 1/(1/2)]^(1/2)
@hertselcorech9680 Жыл бұрын
Thank you! I always enjoy watching your shows. Can you please help me solve: X squared equals to 2 raised to the X. It should have 3 solutions but I don't know how to solve it.
@abhinavanand9032 Жыл бұрын
There are only two real solutions x=2,4
@michaelcampbell6922 Жыл бұрын
There are three real solutions, but only two integer solutions. x^2=2^x 2^2=2^2->x=2 2^4=(2^2)^2=4^2->x=4 These are the two integer solutions. Since there is an intersection on the left of the y-axis, the third solution must be negative. Let (-a)>0 be the absolute value of the third real solution: 2^(a)=(-a)^2=a^2 2^(a/2)=-a 2^(-a/2)=(-a)^(-1)=-1/a 2^[-(a+1)/2]=-1/(2a) -(a/2)*e^[-a*ln(2)/2]=1/2 [-a*ln(2)/2]*e^[-a*ln(2)/2]=ln(2)/2 -a*ln(2)/2=W[ln(2)/2], where W(x*e^x)=x a=-2W[ln(2)/2]/ln(2)
@ParaNozek Жыл бұрын
why (x+1/x)^x only defined when x>0?
@SyberMath Жыл бұрын
because that's when x+1/x > 0
@ParaNozek Жыл бұрын
@@SyberMath for example x=-2 => (-2-1/2)^-2 = 4/25 and it's positive. How can we exclude negative solutions? (I know there is none)
@barakathaider6333 Жыл бұрын
👍
@giuseppemalaguti435 Жыл бұрын
1/2
@broytingaravsol Жыл бұрын
x=1/2
@MisterPenguin42 Жыл бұрын
"How do you come up with these equations?" I like to throw variables, integers, radicals, vincula, parantheses, and irrational numbers into a Nutribullet and then make a video. is what I'm expecting at the end of this video. Update: I was wrong.
@SyberMath Жыл бұрын
Ooopsies! Did I forget to talk about it?
@MisterPenguin42 Жыл бұрын
@@SyberMath I don’t think so, but that just means more SyberMath content!!