Summing A Cool Infinite Series

  Рет қаралды 4,157

SyberMath

SyberMath

Күн бұрын

Пікірлер
@Marcus-y1m
@Marcus-y1m 23 сағат бұрын
4:17 mind blowing 🤯 . That was a genius observation. Thanks sir!
@ZachariusDackley
@ZachariusDackley 23 сағат бұрын
I have a question. What are the key concepts i have to study to learn to solve this ? I am willing to review them first so that i could master this problem from the video. I am now starting to study math through KZbin videos. A reply may help me a lot. This is the 3rd video i am watching of your channel. I appreciate your work Sir !
@nothinghere9576
@nothinghere9576 21 сағат бұрын
This solution uses differentiation, if you want to understand it, you should know about derivatives and antiderivatives, you study those in calculus. You also need formula for the sum of geometric series, you can review what geometric series is in general.
@sonicbreaker00
@sonicbreaker00 13 сағат бұрын
What grade/class are you in ?
@MrGeorge1896
@MrGeorge1896 20 сағат бұрын
We can find the term for the sum of (n + 1)² * x^n even w/o differentiation just with the basic formula 1 + x² + x³ + ... = 1 / (1 - x). So 1 + 4x + 9x² + 16x³ + ... = (1 + 3x + 5x² + 7x³ + ...) * (1 + x + x² + x³ + ...) = (1 + 3x + 5x² + 7x³ + ...) / (1 - x) = (1 + 2x + 2x² + 2x³ + ...) * (1 + x + x² + x³ + ...) / (1 - x) = (1 + 2x + 2x² + 2x³ + ...) / (1 - x)² = ( -1 + 2 * (1 + x + x² + x³ + ...) ) / (1 - x)² = (-1 + 2 / (1 - x) ) / (1 - x)² = (x - 1 + 2) / (1 - x)³ = (x + 1) / (1 - x)³
@doctorb9264
@doctorb9264 16 сағат бұрын
Excellent work on these sum problems.
@guyhoghton399
@guyhoghton399 20 сағат бұрын
Sometimes it helps to multiply and then take the difference with series like these. Let *_S = 1²/7⁰ + 2²/7¹ + 3²/7² + ... + (n + 1)²/7ⁿ +_* ... ∴ _7S = 7 + 2²/7⁰ + 3²/7¹ + ... + (n + 2)²/7ⁿ +_ ... Taking the difference: _6S = 7 + (2² - 1²)/7⁰ + (3² - 2²)/7¹ + ... + [(n + 2)² - (n + 1)²]/7ⁿ +_ ... ⇒ _6S = 7 + Σ₀∞{(2n + 3)/7ⁿ}_ ⇒ *_6S = 7 + 3Σ₀∞{1/7ⁿ} + 2Σ₀∞{n/7ⁿ}_* ... ① This has decomposed _S_ into a constant, a G.P. and a series that can be derived from the derivative of a G.P. Let *_f(x) = Σ₀∞{(x/7)ⁿ} = 1/(1 - x/7) = 7/(7 - x)_* ∴ _f(1) = Σ₀∞{1/7ⁿ}_ _f'(x) = 7/(7 - x)² = Σ₀∞{nxⁿ⁻¹/7ⁿ}_ ∴ _f'(1) = Σ₀∞{n/7ⁿ}_ From ①: _6S = 7 + 3f(1) + 2f'(1)_ ⇒ *_S = ⅙{7 + (3)(7/6) + (2)(7/36)} = 49/27_*
@paulortega5317
@paulortega5317 7 сағат бұрын
In general n²(n+1)/(n-1)³, in this case n=7
@ciaucia156
@ciaucia156 16 сағат бұрын
S - rS = S₁ = 1 + 3r + 5r² + 7r³ +… S₁- rS₁= S₂ = 1 + 2r + 2r² + 2r³ +… = 1 + 2r(1 + r + r² +…) = 1 + 2r/(1-r) S₁(1-r) = S(1-r)² = (1+r)/(1-r) S = (1+r)/(1-r)³
@msmbpc24
@msmbpc24 22 сағат бұрын
Nice trick.
@SyberMath
@SyberMath 19 сағат бұрын
Thanks
@russellsharpe288
@russellsharpe288 8 сағат бұрын
s = 1/1 + 4/7 + 9/49 + 16/343 +.... s/7 = 1/7 + 4/49 + 9/343 + ... subtract two previous lines to find 6s/7 = 1/1 + 3/7 + 5/49 + 7/343 +... 6s/49 = 1/7 + 3/49 + 5/343 + ... subtract two previous lines to find 36s/49 = 1/1 + 2/7 + 2/49 + 2/343 + ... now subtract 1 and use standard geometric sum to find (36s - 49)/49 = 2/7 (1+ 1/7 + 1/49 +...) = 2/7 x 7/6 = 1/3 36s - 49 = 49/3 36s = 49 x 4/3 s = 49/27
@RashmiRay-c1y
@RashmiRay-c1y 16 сағат бұрын
The sum is d/dr r d/dr [1/(1-r) ] = (1+r)/(1-r)^3 = 49/27.
@Evil_Jyan
@Evil_Jyan 18 сағат бұрын
16/91
@doctorb9264
@doctorb9264 16 сағат бұрын
The first term is already 1.
@Evil_Jyan
@Evil_Jyan 9 сағат бұрын
@doctorb9264 I meant 343
@chathurangasameera6722
@chathurangasameera6722 22 сағат бұрын
I have an nother idea we get the fair formula of sequence ur then ur=((1+r)^2)/7^r i allready foget the first term is 1 okay then my ur is like without 1 okay my target is sigma r goes to 1 to infinity ur + 1. This is the sum of the sequence.okay then after i suppose ur = f(r)-f(r+1) Then f(r)=(Ar^2+Br+C)/7^r And finally you can substitute f(r) and f(r+1) and you can get the values of A,B,C . A=7/6 B=49/18 C=49/27 Then after we can get sum of ur Okay r=1 u1 = f1-f2 r=2 u2 = f2 - f3 furtherly r=n-1 un-1 =f(n-1)-f(n) r=n un = f(n) - f (n+1) Okay adding all this we can get sigma r running to 1 to n ur = f1-f(n+1) Okay finally we get the limits of n goes to infinity f1-f(n+1) value Easily to calculate its value is 22/27 Finally sum is given 1+22/27=49/27.
@giuseppemalaguti435
@giuseppemalaguti435 19 сағат бұрын
S=Σk^2/7^(k-1)..k=1,2,3...=7Σk^2(1/7)^k=7(1/7)(1+1/7)/(1-1/7)^3=7(8/49)/(216/343)=49/27
@scottleung9587
@scottleung9587 Күн бұрын
Nice!
@Don-Ensley
@Don-Ensley 20 сағат бұрын
problem Can you sum 1 + 4 / 7 + 9 / 49 + ... Let the nth term be Sₙ. Examination of the pattern reveals Sₙ. Sₙ = ( n + 1 )² / ( 7 ⁿ ) , with n starting at 0. The ratio test for convergence is used. lim (Sₙ₊₁/Sₙ)=(1/7)[(n+ 2)²]/[(n+1)²] n→∞ = 1/7 < 1 This series converges absolutely. Let the common ratio be r. r = 1 / 7 Sₙ = ( n + 1 )² r ⁿ Use sigma notation to denote the sum S. ͚ S = Σ ( n + 1 )² r ⁿ ⁿ⁼⁰ This is best tackled by an expansion of Sₙ. Sₙ = ( n + 1 )² r ⁿ Sₙ = (n² + 2 n + 1)r ⁿ Split the series up into three pieces. ͚ ͚ ͚ S = Σ n² r ⁿ + 2 Σ n r ⁿ + Σ r ⁿ ⁿ⁼⁰ ⁿ⁼⁰ ⁿ⁼⁰ Let P₁, P₂, P₃ represent the n², n, and unity series terms. Use the known sum of a geometric series formula as the given. ͚ P₃ = Σ r ⁿ = 1 / ( 1 - r ) ⁿ⁼⁰ = 7 / 6 Take the derivatives on each side with respect to r. ͚ Σ n r ⁿ / r = 1 / ( 1 - r )² ⁿ⁼⁰ Multiply by r to find P₂. ͚ P₂ = Σ n r ⁿ = r / ( 1 - r )² ⁿ⁼⁰ = 7 / 36 ͚ Σ n r ⁿ = r / ( 1 - r )² ⁿ⁼⁰ Take the derivatives again on each side with respect to r. ͚ Σ n² r ⁿ / r = d[ r / (1 - r)² ]/dr ⁿ⁼⁰ = (1 + r) / [(1 - r)³ ] Multiply by r to find P₁. ͚ P₁ = Σ n² r ⁿ = ( r + r² ) / [ ( 1 - r )³ ] ⁿ⁼⁰ = 56 / 216 S = P₁ + 2 P₂ + P₃ = (56 / 216) + (84/ 216) + (252 / 216) = 392 / 216 = 49 / 27 answer 49 / 27
@yurenchu
@yurenchu 23 сағат бұрын
_Answer_ : 49/27 _Calculation_ : Sum S = 1 + 4/7 + 9/49 + ... + k²/7^(k-1) + ... Let f(x) = 1 + 4x + 9x² + ... Then S = f(1/7) and ∫ f(t) dt , from t=0 to t=x = x + 2x² + 3x³ + ... = x*(1 + 2x + 3x² + ... ) = x*g(x) where g(x) = (1 + 2x + 3x² + ... ) = = d/dx (x + x² + x³ + ...) = d/dx (x/(1-x)) = ((1-x) + x)/(1-x)² = 1/(1-x)² ∫ f(t) dt , from t=0 to t=x = x*g(x) = x*(1/(1-x)²) = x/(1-x)² f(x) = d/dx ( x/(1-x)² ) = [(1-x)² + x*2(1-x)]/(1-x)⁴ = = [(1-x) + 2x]/(1-x)³ = [1 + x]/(1-x)³ S = f(1/7) = = [1 + 1/7]/(1 - 1/7)³ = [8/7]/(6/7)³ = [8/7]/(6³/7³) = [8*7²]/(6³) = [7²]/(3³) = 49/27
@Marcus-y1m
@Marcus-y1m 23 сағат бұрын
Good Job
@ZachariusDackley
@ZachariusDackley 23 сағат бұрын
With that , it becomes more difficult for me . But thanks
A Fun Homemade Functional Equation
9:13
SyberMath
Рет қаралды 365
An Interesting Homemade Differential Equation
11:30
SyberMath
Рет қаралды 3,2 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
String Theory is Falsifiable After All, String Theorists Say
6:37
Sabine Hossenfelder
Рет қаралды 15 М.
sin x + cos x =1  Solved  [ IB Math]
5:43
IB Math Master
Рет қаралды 29 М.
two nice math problems
11:31
Michael Penn
Рет қаралды 650
An Interesting Infinite Sum With Factorials
8:13
SyberMath
Рет қаралды 3,7 М.
Solving A Quintic Without Using The Quintic Formula
12:03
SyberMath
Рет қаралды 5 М.
An Interesting Non-standard Equation
10:54
SyberMath
Рет қаралды 2,7 М.
Simplifying An Interesting Radical
9:51
SyberMath
Рет қаралды 4,2 М.
An Interesting Exponential Equation
12:11
SyberMath
Рет қаралды 3,6 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН