x/y = y’ implies y*y’ = x. d/dx(y^2) = d/dy(y^2)* dy/dx = 2y* dy/dx which implies y*y’= d/dx(y^2/2). We may thus write d/dx(y^2/2) = x = d/dx(x^2/2) which implies d/dx(y^2-x^2) = 0. We may thus conclude y(x) = sqrt(x^2+a) which is defined when x^2 > -a.
@alphastar56269 ай бұрын
( f² )' = 2.f'.f which equals to 2x thanks to the equation we get by derivating the starting statement of the exercise. then you integrate f² ' = 2.x and you find f = ± sqrt( x² + c)
@kianmath7110 ай бұрын
Great video😊
@امینظاهرزاده10 ай бұрын
Well done 👏
@SyberMath9 ай бұрын
Thank you
@E.h.a.b9 ай бұрын
f(x) = x is a possible solution.
@SyberMath9 ай бұрын
That’s right
@rodrigomarinho1807Ай бұрын
Let c be zero.
@scottleung958710 ай бұрын
Nice!
@tarunmnair10 ай бұрын
Isnt it a separable DE ? So, we can directly do y.dy = x.dx and then y = sqrt(x^2+c) , I think, u didn't need to use substitution... (2nd method 😂😂😂) Also, even in 2nd substitution, we can substitute u=sin(theta)...
@user-lu6yg3vk9z10 ай бұрын
Try this problem Integral 1/(x^2(x^2+25))dx Hint: Use Fractional Decomposition
@theblainefarm33109 ай бұрын
I'm curious why the substitution was necessary? I know other people have left the same comment.