One small nuance that I tell my students all of the time: there are not 24 complex solutions, but instead there are 25, since the real solution is also complex. There is 1 real solution and 24 non-real solutions. As always, an excellent video! Congrats on 25k!!
@SyberMath3 жыл бұрын
That's right!
@mokouf33 жыл бұрын
Yes. I also made the same mistake for infinitely many times!
@JohnRandomness1053 жыл бұрын
Let's be careful both ways. Let's avoid gotchas. So one should understand what is meant by one real solution and 24 complex solutions. One routinely refers to "integer spin" and "half-integer spin", with the understanding that the half-integer means non-integer. I don't really like saying, "integer-plus-a-half spin".
@squeezy84143 жыл бұрын
What do you mean the real solution is also complex?
@denismilic18783 жыл бұрын
@@squeezy8414 all real numbers are also complex number with zero imaginary part
@MathElite3 жыл бұрын
Congrats on 25K man! You deserve it so much I think 100K could come by the end of the year
@brentwilson66923 жыл бұрын
I'll look forward to seeing the proper term for a 100th degree equation at that time!
@infinitymodone43143 жыл бұрын
definitely
@leecherlarry3 жыл бұрын
Congrats, 25k, just awesome!!
@HaiNguyen-qx3db3 жыл бұрын
@@brentwilson6692 So...how about an equation with 100 fraction mark and a radical?
@aashsyed12773 жыл бұрын
No even more. Btw, i can't see the join button And i think it is only in the USA
@snejpu25083 жыл бұрын
Congratulations on another milestone! Hmm, as I had no intention to deal with 25th degree polynomial, I started by being creative this time and it did its job. : ) I won't spoil all the solution, it's your part. But one little tip for solvers: it might be helpful for you if you know where a function and its inverse meet.
@leickrobinson51863 жыл бұрын
Although you have to be careful. Some functions can also intersect their inverse off the diagonal.
@SyberMath3 жыл бұрын
Thank you! 💖
@SyberMath3 жыл бұрын
@@leickrobinson5186 That's interesting! You mean they will not intersect on the diagonal?
@leickrobinson51863 жыл бұрын
@@SyberMathI believe that you can show that any continuous function will intersect its inverse either not at all (as with y=e^x) or on the diagonal. However, in the latter case, it may also intersect its inverse off the diagonal as well. (E.g., the function y=(x-10)^2 will intersect its inverse in four places, two on the diagonal and two off the diagonal.) However, you can also construct a *discontinuous* function that only intersects its inverse *off* the diagonal. For example, the function defined by y = {1, x=0} will intersect its inverse at 2 locations, both off the diagonal [at (-1,1) and (1,-1)].
@sonalichakraborty68303 жыл бұрын
@@leickrobinson5186 bro the functions u gave as example aren't even bijective how in the world are u talking about the graph of their inverses? 😂
@HemantPandey1233 жыл бұрын
Equation 1 uses the property that both functions are inverse of each other and satisfy f(x) = x.
@henrydenner54483 жыл бұрын
Good day. Congratulations on the subs. You got me as a new one. I love the way you describe the solutions and I also find your vocal tone very pleasing to listen to. And most importantly, I love your tempo of explanation. I think it is JUST RIGHT. Awesome!
@SyberMath3 жыл бұрын
Awesome, thank you and welcome aboard! 💖
@carloshuertas47343 жыл бұрын
Another great explanation, SyberMath! I actually figured out the real value of x in my head. I did not know that there are 24 complex solutions in this math problem. Thanks!
@SyberMath3 жыл бұрын
You're welcome! Thanks!
@tl19893 жыл бұрын
Congratulations for 25k subscribers!!!
@SyberMath3 жыл бұрын
Thank you! 💖
@alatus28443 жыл бұрын
I tried 2. Considering that you have to subtract x to get 30 (0 as ones digit), x should have the same ones digit as its 5th power.
@valentinodrachuk56923 жыл бұрын
Wow! Already 25k! Congrants!
@SyberMath3 жыл бұрын
Thanks! 💖
@tonyhaddad13943 жыл бұрын
Congratulation mst sybermath for 25k sub , keep on !! ❤
@aashsyed12773 жыл бұрын
You commented eallier today!
@tonyhaddad13943 жыл бұрын
@@aashsyed1277 yes so what ? 😂
@aashsyed12773 жыл бұрын
@@tonyhaddad1394 you don't comment this early!
@tonyhaddad13943 жыл бұрын
@@aashsyed1277 yes bro it depend if im free or not
@aashsyed12773 жыл бұрын
@@tonyhaddad1394 oh
@coolmangame41413 жыл бұрын
Congrats on 25K!!! 🎉
@SyberMath3 жыл бұрын
Thanks! 💖
@derpycreeper23383 жыл бұрын
Congrats on 25K subscribers! 👏🤯🎊🥳
@SyberMath3 жыл бұрын
Thank you! 💖
@yoav6133 жыл бұрын
Very nice!
@rssl55003 жыл бұрын
Hello sybermath congrats to you on getting 25k I learned a lot from your KZbin channel including wlog assumptions using inequalities in smart ways and using Simon to solve fractional equations Thank you so much sybermath :D
@SyberMath3 жыл бұрын
Glad to hear that!
@rssl55003 жыл бұрын
:D
@gemeni02 жыл бұрын
Oh! No! We needed other 24 solutions not aproximations.
@mustafizrahman28223 жыл бұрын
Congratulations for 25.2k !!
@quantumobject38153 жыл бұрын
Is anybody else wondering about the logo
@michaelempeigne35193 жыл бұрын
(x^5 - 30 )^5 - 30 = x ==> Let f ( x ) = x^5 - 30 so f ( f ( x ) ) = x and as a result f ( x ) = f^( - 1 ) ( x )
@e-learningtutor13513 жыл бұрын
congratulations on 25k,you deserve it brother :)
@SyberMath3 жыл бұрын
Thank you very much! 💖
@moeberry82263 жыл бұрын
Right from the start if you add oaks to both sides of the equation and take the 5th root on both sides you will realize that the functions are inverses of each other and therefore the only real solutions come from Y equals X and then you can solve from there.
@policarpo48163 жыл бұрын
How do we demonstrate that x^4+2x^3+4x^2+8x+15=0 has no real solutions? With similar steps I concluded that x=2 is a solution, but I wasn’t able to show that it is the only solution.
@dqrk03 жыл бұрын
u can easily see it because u are adding a bunch of terms and u have x⁴ as a leading term which will PROBABLY ALWAYS going to exceed other terms. for the whole proof u will need to express it as a sum of perfect squares.
@policarpo48163 жыл бұрын
@@dqrk0 Well, the leading term tells us about the limit to +infinity and -infinity, it doesn’t really tell us what happens “in between”. Anyway, I used your strategy and this is what I found: x^4+2x^3+4x^2+8x+15 = (x^2+x)^2+1/3(3x+4)^2+29/3, which is a sum of positive terms (actually, two are non-negative and one is positive), therefore the polynomial is always positive and has no real roots. Thanks a lot for your tip!!
@dqrk03 жыл бұрын
@@policarpo4816 yes, i agree, its not really a proof, but its a really good sign when u have a bunch of terms that are just adding up, it USUALLY means it doesn't have any real roots. of course u need a rigorous proof of that, but u know that u are chasing ,,no real roots" as a result. great job, i am glad i have helped :)
@MicheleCaine3 жыл бұрын
The hard way is to do long division in order to prove that the quotient has no real solutions
@policarpo48163 жыл бұрын
@@MicheleCaine if there are no solutions there is nothing to divide the polynomial by (without a remainder). If you mean dividing x^5-x-30 by x-2, I used synthetic division, there is really no need for long division
@rjamesmontejo3 жыл бұрын
Congraaats!!
@SyberMath3 жыл бұрын
Thank you! 💖
@oscar55353 жыл бұрын
I hope your channel has an exponential growth :D
@aashsyed12773 жыл бұрын
Wow sybermath thanks so much!!!!!
@mcwulf252 жыл бұрын
I could see the X=2 solution at the start. The difficulty is proving it's the only solution. Nice problem 👍
@SyberMath2 жыл бұрын
Good point!
@laokratis553 жыл бұрын
Congratulations for the milestone! I am looking forward for more geometry related problems ! In the equation you presented, the solution method could be similar for any number m that can be written as m=a^5-a, 30 being one case . Then the initial equation becomes (x^5-a^5+a)^5-a^5-(x-a)=0. If you factor the first two terms you get (x^5-a^5)(20th order pol. in x)-(x-a)=0 which again gives the real root a. This is essentially the same with what you presented, but factorization is applied to the first step. As a second remark any number m can be written as m=a^5-a since this equation has one real solution for the number a (positive or negative) as you showed by the graphic solution, therefore the initial equation has exactly one real solution for any real m.
@suhail_693 жыл бұрын
That's a strong term !! Quinviginticgigantic equation 😎
@petereziagor46043 жыл бұрын
😅😅😅😅
@SyberMath3 жыл бұрын
😁
@kaharinuhen62792 жыл бұрын
kzbin.info/www/bejne/gJzEfoaHg6arkJY
@זאבגלברד3 жыл бұрын
Guessing x=2 is simple. We have a line y=x+30 and f(x)=(x^5-30)^5. It is not difficult to find its derivative and conclude that increasing function, slightly before x=2 it is zero, and it is increasing very fast... almost like a straght vertical line... Do you think it is acceptable to explain like that ? that x=2 is the only intersection ?
@henrydenner54483 жыл бұрын
I agree. I was also sitting here thinking the same thing.
@SyberMath3 жыл бұрын
Sounds good to me
@dominiquebercot95393 жыл бұрын
J’ai fait la même chose!
@paragswarnkar68583 жыл бұрын
Please tell me how you got other 24 complex solutions 🥺 which method you used...can you make a video on it please
@harshsinghal58983 жыл бұрын
Man this guy is a champion at solving higher degree equations!
@emmanuellaurens2132 Жыл бұрын
This is late, but: you can rewrite the original equation as (x^5 -30)^5 -30 = x f is used in the video, so to avoid confusion let g(x) = x^5 - 30 We now have g(g(x)) = x But g(x) is an easy function to analyze, it is a simple translation of x->x^5, so it is a strictly increasing bijection, and it increases faster than x->x, so it will have a single point where g(x0)=x0, which we can either solve or guess is x=2, g(2)=2 and g(g(2))=g(2)=2. For yy, so again no possible solution. This, x=2 is the only real solution. As for complex solutions, I feel there should be a way to find them through the same functional analysis, but I'm afraid it's beyond my knowledge and skill :/
@PunmasterSTP3 жыл бұрын
This was a wonderful video, and I definitely learned new stuff and had fun in the process. I suppose you could say that now, things are…five-by-five!
@SyberMath3 жыл бұрын
Awesome! Thanks! 💖
@Frankyang8193 жыл бұрын
amazing
@SyberMath3 жыл бұрын
Thank you!
@michaelempeigne35193 жыл бұрын
I got x=2 as an answer by inspection
@SyberMath3 жыл бұрын
Nice!
@tonyhaddad13943 жыл бұрын
11:06 but you didnt prove it (its another case ,not like (x^5+x =y^5+y)
@tonyhaddad13943 жыл бұрын
I have a proof : We have f(x) = x^4 + 2x^3 + 4x^2 + 8x + 15 = 0 my claim is that its always > 0 f(x) can be writen as (X+(1/2))^4 + (5/2)x^2 + (15/2)x + 239/16 the first term is >= 0 (since 4 power) and the rest has negative descrimenent (and the coefficient of x^2 is positive) so the rest is always strictly bigger then 0 therefor f(x) is always > 0
@SyberMath3 жыл бұрын
Nice!
@tonyhaddad13943 жыл бұрын
@@SyberMath thank u 😍
@pardeepgarg26403 жыл бұрын
Congratulations
@SyberMath3 жыл бұрын
Thank you! 💖
@speakingsarcasm90143 жыл бұрын
I substituted x=2 r8 aftr seeing the eqn. 😎 my guess turned out correct!
@rssl55003 жыл бұрын
Lol
@aashsyed12773 жыл бұрын
Wow thanks for these joyful moments 😊😊☺️☺️😊😊
@SyberMath3 жыл бұрын
No problem! Thank you! 😊
@-basicmaths8623 жыл бұрын
(x^5-30)^5-x=30 Rearrange the equation as (x^5-32+2)^5-32-(x-2)=0 A=x^5-32 (A+2)^5-2^5-(x-2)=0 A{(A+2)^4+(A+2)^3*2+(A+2)^2*4+ +(A+2)*8+16}-(x-2)=0 Now x-2 is factor of A and so factor ofLHS.x=2
@txikitofandango3 жыл бұрын
Congrats on your subscriber milestone! ... kilometerstone...
@SyberMath3 жыл бұрын
Thank you very much! 💖
@Grassmpl3 жыл бұрын
Here's why the quartic has no real roots. Rewrite 4x^2 as 2x^2+2x^2 so now you have 6 terms in decreasing order of exponents. The sum of the first 3 term is >=0, and last 3 terms is >0, both by the quadratic formula.
@JohnRandomness1053 жыл бұрын
Just try out nice numbers, such as x = ... So how the heck do we divide out x-... from that polynomial?
@Wurfenkopf3 жыл бұрын
Another solution: From the manipulation at 2:27 we know that x is a fixed point of f(f(t)), where: f(t) = t^5 - 30 But the succession a[n+1]=f(a[n]) is strictly increasing for initial condition a[0]>2 and strictly decreasing for a[0]
@manumano38873 жыл бұрын
Wish u get a million subs soon
@SyberMath3 жыл бұрын
💖 Thank you! 💖
@Umbra4513 жыл бұрын
Nice solution! I assume all the complex solutions have the same absolute value as the real one?
@SyberMath3 жыл бұрын
That's a good question! Why would that be the case?
@Alians01083 жыл бұрын
@@SyberMath Because all solutions are written as R(cosv+isinv) = z IzI = sqrt(R^2(cos^2(v)+sin^2(v))) = R
@МаксимАндреев-щ7б3 жыл бұрын
Let all 25 complex roots have absolute value 2. By Vieta's formulas, product of roots equals to -(-30^5-30), but it's absolute value equals to 2^25 by assumption. 30^5+30 is divided by 3, but 2^25 is not divisible by 3. Therefore, 30^5+30 ≠ 2^25. Contradiction.
@Umbra4513 жыл бұрын
@@SyberMath Oh no, that was just a guess. I would love to see them mapped out and see if / why they make any kind of shape.
@mamaklu95183 жыл бұрын
To test x=1,x=2 find key x=2 it is very simple.
@mathsfamily67663 жыл бұрын
So why do yo know the second factor is complex solutions? Sir
@SyberMath3 жыл бұрын
Because the function is increasing, it can only have one intersection point with a horizontal line
@aviratnakumar58473 жыл бұрын
That's awaome now supposedly someone asks to find all the four complex solution to the other factors then how to proceed.
@paultoutounji35823 жыл бұрын
I think you forgot the coefficient of the Pascal Triangle (1-4-6-4-1) in your demo....
@leecherlarry3 жыл бұрын
compi finds 25 solutions (24 complex, 1 real), here is the real solution: *Solve[(x^5 - 30)^5 - x == 30, x, Reals]*
@archiebrew81843 жыл бұрын
weird bot
@MathElite3 жыл бұрын
@@archiebrew8184 lol by the way it isn't a bot but it looks like one a little
So what kind of an equation is (x^9-19680)^9 - x = 19680? I guess it would be an unoctogenic equation.
@SyberMath3 жыл бұрын
Probably unoctogintic 😁
@Germankacyhay3 жыл бұрын
👍
@udibaraj67143 жыл бұрын
Only mathematicians can solve this
@SyberMath3 жыл бұрын
Why?
@tuongnguyenduc22913 жыл бұрын
Let y = x^5 -30 and we have system sym !
@3r3nite983 жыл бұрын
Ok,also adway kumar pls respond to me,Its my bad that I made u feel bad,I dont mean to make u feel bad.
@ezequielangelucci12633 жыл бұрын
-30 -30 = 0?????
@SyberMath3 жыл бұрын
-30 - (-30) = 0
@ezequielangelucci12633 жыл бұрын
@@SyberMath ohhhh, srry i was thinkinf like 10 minutes that i dont figure how thnxs a lot! i love your videos
@gemeni02 жыл бұрын
I think the right spanish-latin word is quinvigesimic or quinvigesic not the way you've put it.
@SyberMath2 жыл бұрын
I think the right word is viginti quintic. I don't know why I used quinvigintic which is 10^78 en.wiktionary.org/wiki/quinvigintillion 😜
@aashsyed12773 жыл бұрын
You should say in the title real solutions. Btw, how did Wolfram alpha solved a 25th degree polynomial cause there is no 25th degree solution.
@SyberMath3 жыл бұрын
It probably approximated
@Teamstudy45953 жыл бұрын
X=2
@rocketsroar13 жыл бұрын
It is difficult for me to see any point to these videos, since the "solutions" involve a huge amount of prior knowledge which cannot be explained or justified within the video. I would recommend abandoning this kind of effort.