Basics of Modular Arithmetic

  Рет қаралды 82,237

SyberMath

SyberMath

Күн бұрын

Пікірлер: 89
@pianoforte17xx48
@pianoforte17xx48 3 жыл бұрын
OMG just on time! I have been taking this lesson for a month and I can't wrap my head around it. Can't wait to finally understand it!
@SyberMath
@SyberMath 3 жыл бұрын
Wonderful!
@haricharanbalasundaram3124
@haricharanbalasundaram3124 3 жыл бұрын
Modular arithmetic is great for finding the last digits of very large exponents... like 7^55, for example. 49 is congruent to -1 (mod 10), 7^4 is congruent to -1^2 = 1 (mod 10) . 55 is basically 13*4 + 3, so the last digit is the last digit of 7^3, which is 3.
@SyberMath
@SyberMath 3 жыл бұрын
Absolutely!
@diogenissiganos5036
@diogenissiganos5036 3 жыл бұрын
Modular arithmetic; one of the most important aspects of mathematics
@aashsyed1277
@aashsyed1277 3 жыл бұрын
IT COMES IN ABSTRACT ALGEBRA WHICH COMES IN PHYSICS, CHEMISTRY AND SO ON
@SyberMath
@SyberMath 3 жыл бұрын
That's right!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath ARE YOU REPLYING TO ME?
@aahaanchawla5393
@aahaanchawla5393 3 жыл бұрын
@@aashsyed1277 hey watch your caps
@leif1075
@leif1075 3 жыл бұрын
@@SyberMath At 6:39 it doesnt just jave 2 solutions in mod 7 but an infinte mumber because as you said you can add any multiple of 7 so 12 for e.g. is another solution since 12 squared plus 3 equals 147 which is a multiple of 7.
@LOL-gn7kv
@LOL-gn7kv 3 жыл бұрын
Modular makes everything so easy! Even if you don't know too much of it , it still useful like a congruent to b modulo n can be written as a = kn + b for some integer k and it just becomes a linear equation thereafter. Also syber make this a series ;)
@jakubwieliczko257
@jakubwieliczko257 3 жыл бұрын
Awesome video! I am preparing for the olympiad so it was fun to see another perspective on modular arithmetic. Great explanation. Greetings from Poland! ❤💕💖
@SyberMath
@SyberMath 3 жыл бұрын
Glad it was helpful! 💖
@aleksszukovskis2074
@aleksszukovskis2074 3 жыл бұрын
Yes! finally! I was searching for these!
@mathsandsciencechannel
@mathsandsciencechannel 3 жыл бұрын
I love this guy,always consistent,good explanation and good videos. Almost getting to 10k subscribers and he deserves it. Will get there someday bro.😍
@SyberMath
@SyberMath 3 жыл бұрын
I appreciate that! 💖
@242math
@242math 3 жыл бұрын
you are a great teacher bro, thanks for taking us through the basics of a topic that is so confusing to many students, great job, excellent tutorial
@SyberMath
@SyberMath 3 жыл бұрын
I appreciate that! 💖
@shreyan1362
@shreyan1362 3 жыл бұрын
@Sybermath please continue this series.... this is really helpful 😊🤩
@aashsyed1277
@aashsyed1277 3 жыл бұрын
YES
@manojsurya1005
@manojsurya1005 3 жыл бұрын
This video reminds me of all the theorems and basics that I learned for modulo like fermat,Euler totient function,Wilson theorem,Chinese remainder theorem(for solving 3 congruent modulo).great video,u can make a video on each theorem briefly if u can
@haricharanbalasundaram3124
@haricharanbalasundaram3124 3 жыл бұрын
I think those would be unlike the videos in this channel, since I think videos are made to help in problem solving, not for teaching itself. There are some MIT OCW lectures on it though, they are great
@wannabeactuary01
@wannabeactuary01 Ай бұрын
good video - great revision
@kubabartmanski7254
@kubabartmanski7254 Жыл бұрын
Very neat and elegant introduction to the topic!
@SimchaWaldman
@SimchaWaldman 3 жыл бұрын
One of my favorite topics. And its symbols... feast for my eyes!
@RealEverythingComputers
@RealEverythingComputers 2 ай бұрын
Thanks for the great explanation - great for an abstract algebra course
@SyberMath
@SyberMath 2 ай бұрын
Glad you like it!
@repsarklar9420
@repsarklar9420 3 жыл бұрын
*SYBERMATH LOVERS ...* 👇
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! 💖
@shreyan1362
@shreyan1362 3 жыл бұрын
@@SyberMath i thought you were bringing quadratic congruence as well :|
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath yes!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath i love you!
@akolangto8225
@akolangto8225 3 жыл бұрын
Syber Math fan here from the Philippines
@sekarganesan902
@sekarganesan902 3 жыл бұрын
Good introduction to modulo.
@SyberMath
@SyberMath 3 жыл бұрын
Glad you think so!
@clovissimard3099
@clovissimard3099 5 ай бұрын
TEMPS-HASARD MODULO 3 Pour en revenir au sujet qui nous occupe, dans le monde subatomique, il se pourrait que les phénomènes ne suivent pas une ligne de temps unique, ce qui est conforme à la théorie de la gravité quantique et de la « non-existence » temporelle.
@coefficient1359
@coefficient1359 3 жыл бұрын
Great, bring more.
@sergeigrigorev2180
@sergeigrigorev2180 3 жыл бұрын
Really like this topic! I hope you will continue the Modular Arithmetics series
@deratu5517
@deratu5517 3 жыл бұрын
Wow, I really do like this video! Hopefully there are many more topics that can be explained like this. Have a nice day
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! You too!
@SamBHodge
@SamBHodge Ай бұрын
Thanks
@aayushve426
@aayushve426 7 ай бұрын
great video man ! keep up the work !
@Neemakukreti5421
@Neemakukreti5421 Жыл бұрын
couldnt understand the first example (x^2 +3_=0(mod7)after the whole adding 7 to both sides thing. To be specific, you equaled 7 to 0,which has been defined as 7's remainder and which is not the number itself... So how can one just add ita remainder to one side, and the dividend to the other..? A reply would be much appreciated
@SyberMath
@SyberMath Жыл бұрын
Adding 7 and 0 are equivalent because 7 is congruent to 0 mod 7. You can also think of it this way: all numbers in the form 7k where k is an integer are congruent mod 7. 7 and 0 are in the same group in that sense. All integers can be grouped into 7 groups mod 7 like 7k 7k+1 7k+2 7k+3 7k+4 7k+5 and 7k+6. Any integer can be represented in one of these forms. I hope this helps.
@SyberMath
@SyberMath Жыл бұрын
-3 and 4 are congruent mod 7 because they can both be written as 7k+4. Basically they are in the same group (referring to groups I mentioned in my previous reply)
@srividhyamoorthy761
@srividhyamoorthy761 Жыл бұрын
@SyberMath can k be 0
@srividhyamoorthy761
@srividhyamoorthy761 Жыл бұрын
​@@SyberMathcan k be 0
@srividhyamoorthy761
@srividhyamoorthy761 Жыл бұрын
After repeatedly watching this i am able to understand so basically if u see for eg 28 is a multiple of 7 so remainder is 0 it can be written as 28 congruent to 0 (mod7 )now if you're to add 7 to 28 it becomes 35 since we're not even into the quotient when we write in modular form 35 also is congruent to mod7 you see so the remainder is 0 so if you are to add add 7 to rhs it still should give the same remainder of -3 that's it .
@manavaggarwal2714
@manavaggarwal2714 3 жыл бұрын
Are you coming up with a course on number theory or is it just a randomly posted topic🤔.
@SyberMath
@SyberMath 3 жыл бұрын
After the mod equation video, there's been some requests. No plan on making a course
@mainaccount0411
@mainaccount0411 11 ай бұрын
Sir, how do you make your videos, what software do you use to write on?
@SyberMath
@SyberMath 11 ай бұрын
Microphone: Blue Yeti USB Microphone Device: iPad and apple pencil Apps and Web Tools: Notability, Google Docs, Canva, Desmos
@SamBHodge
@SamBHodge Ай бұрын
Please let me learn more about this topic
@rafiihsanalfathin9479
@rafiihsanalfathin9479 3 жыл бұрын
Can you do video like this a basic olympiad theorem and how to use it, but also longer and deep?, it would help me a lot!
@SyberMath
@SyberMath 3 жыл бұрын
Will try in the future
@Qermaq
@Qermaq 3 жыл бұрын
2:42 would 2 and 3 be valid answers? I agree that 11 is congruent to 5 mod 6, but mod 2 would be 1, and mod 3 would be 2, properly. I suppose one can say that 11 is congruent to 5 mod 3 in the same way you can say it's -1 mod 3, as basically in mod n we can add or subtract kn where k is an integer. Is that the right direction?
@SyberMath
@SyberMath 3 жыл бұрын
Yes. 11≡1 (mod 2) and 5≡1 (mod 2) so they are congruent Similarly, 11≡2 (mod 3) and 5≡2 (mod 3) so they are congruent
@MathElite
@MathElite 3 жыл бұрын
First, sooo close to 10k subscribers! Great video
@aashsyed1277
@aashsyed1277 3 жыл бұрын
few hours left!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
HOW ARE YOU FIRST ALWAYS?
@adityadarade4533
@adityadarade4533 Жыл бұрын
Love you bro thanks
@SyberMath
@SyberMath Жыл бұрын
Np. Thank you! 🥰
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
Broo i like modular so much beacaus we can tested in real life and make life easier !!! ofcorse now we computers but it so intersting when we challenge our brain 😍😍
@SyberMath
@SyberMath 3 жыл бұрын
Yes, true
@MangoLassiYT
@MangoLassiYT 11 ай бұрын
at 8:38 why are we squaring residues of 4 to check if sol exists or not. I did it using even no as : 2k and Odd no as :2k+1 taking modulo of these two I concluded solution doesn't exists but i don't understand how did you do it usig residues of 4
@SyberMath
@SyberMath 11 ай бұрын
To find out which number squared leaves a remainder of 2 upon division by 4, we need to check the remainders for all possible numbers which are represented by 4 numbers: 0,1,2,3. Any number greater than these fall into one of these categories by the remainder they leave upon division by 4.
@MangoLassiYT
@MangoLassiYT 11 ай бұрын
oh so we are taking mod first of num and then squaring the remainder and again taking mod ? @@SyberMath
@aashsyed1277
@aashsyed1277 3 жыл бұрын
DAMN YOU ARE SO AWESOME....
@tushargupta986
@tushargupta986 Жыл бұрын
from India
@zainlam9965
@zainlam9965 Жыл бұрын
another small thing is wilson's theorem
@sakkiediereaper
@sakkiediereaper Жыл бұрын
😂 the title should be, Modular Arithmetic: The cheat code to Mathematics!
@SyberMath
@SyberMath Жыл бұрын
😁
@aashsyed1277
@aashsyed1277 3 жыл бұрын
9.8 K SUBS LIKE REALLY!
@srijanbhowmick9570
@srijanbhowmick9570 3 жыл бұрын
Hey SyberMath , how you doing ?
@SyberMath
@SyberMath 3 жыл бұрын
Pretty good! How are you? Long time no see! 😁
@srijanbhowmick9570
@srijanbhowmick9570 3 жыл бұрын
@@SyberMath Yeah exams and all that stuff Finally I am free and can comment as much as I want Thank you once again for keeping me entertained with your math problems during these tough times
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
We have *
@SyberMath
@SyberMath 3 жыл бұрын
You have what? 😁
@aashsyed1277
@aashsyed1277 3 жыл бұрын
DAMN YOU ARE SO AWESOME......
@SyberMath
@SyberMath 3 жыл бұрын
Haha, thanks!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath WELCOME!
@Barikisu-f9p
@Barikisu-f9p Ай бұрын
I don't understand it
@sukienve8144
@sukienve8144 3 ай бұрын
im cooked
@zstar8397
@zstar8397 Жыл бұрын
Hey hope you are doing alright just I wanna say that GOD loved the world so much he sent his only begotten son Jesus to die a brutal death for us so that we can have eternal life and we can all accept this amazing gift this by simply trusting in Jesus, confessing that GOD raised him from the dead, turning away from your sins and forming a relationship with GOD...
@DzulMuqfiz
@DzulMuqfiz 2 ай бұрын
wey palotak dia payah sangat ni
Summing An Interesting Infinite Series
12:04
SyberMath
Рет қаралды 9 М.
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН
А я думаю что за звук такой знакомый? 😂😂😂
00:15
Денис Кукояка
Рет қаралды 4,9 МЛН
Something Strange Happens When You Keep Squaring
33:06
Veritasium
Рет қаралды 7 МЛН
What does a ≡ b (mod n) mean? Basic Modular Arithmetic, Congruence
5:45
Kaprekar's Constant
9:44
Prime Newtons
Рет қаралды 1,3 МЛН
Modular Arithmetic Basics: Congruence mod n
15:21
Mu Prime Math
Рет қаралды 66 М.
Diophantine Equations: Strategies and Examples
27:34
SyberMath
Рет қаралды 63 М.
Modular Arithmetic (Part 1)
10:57
Neso Academy
Рет қаралды 363 М.
How does Modular Arithmetic work?
11:19
Tom Rocks Maths
Рет қаралды 122 М.
Congruences & Modular Arithmetic ← Number Theory
12:26
Socratica
Рет қаралды 18 М.
Fermat's Little Theorem examples
11:45
Maths with Jay
Рет қаралды 491 М.