OMG just on time! I have been taking this lesson for a month and I can't wrap my head around it. Can't wait to finally understand it!
@SyberMath3 жыл бұрын
Wonderful!
@haricharanbalasundaram31243 жыл бұрын
Modular arithmetic is great for finding the last digits of very large exponents... like 7^55, for example. 49 is congruent to -1 (mod 10), 7^4 is congruent to -1^2 = 1 (mod 10) . 55 is basically 13*4 + 3, so the last digit is the last digit of 7^3, which is 3.
@SyberMath3 жыл бұрын
Absolutely!
@diogenissiganos50363 жыл бұрын
Modular arithmetic; one of the most important aspects of mathematics
@aashsyed12773 жыл бұрын
IT COMES IN ABSTRACT ALGEBRA WHICH COMES IN PHYSICS, CHEMISTRY AND SO ON
@SyberMath3 жыл бұрын
That's right!
@aashsyed12773 жыл бұрын
@@SyberMath ARE YOU REPLYING TO ME?
@aahaanchawla53933 жыл бұрын
@@aashsyed1277 hey watch your caps
@leif10753 жыл бұрын
@@SyberMath At 6:39 it doesnt just jave 2 solutions in mod 7 but an infinte mumber because as you said you can add any multiple of 7 so 12 for e.g. is another solution since 12 squared plus 3 equals 147 which is a multiple of 7.
@LOL-gn7kv3 жыл бұрын
Modular makes everything so easy! Even if you don't know too much of it , it still useful like a congruent to b modulo n can be written as a = kn + b for some integer k and it just becomes a linear equation thereafter. Also syber make this a series ;)
@jakubwieliczko2573 жыл бұрын
Awesome video! I am preparing for the olympiad so it was fun to see another perspective on modular arithmetic. Great explanation. Greetings from Poland! ❤💕💖
@SyberMath3 жыл бұрын
Glad it was helpful! 💖
@aleksszukovskis20743 жыл бұрын
Yes! finally! I was searching for these!
@mathsandsciencechannel3 жыл бұрын
I love this guy,always consistent,good explanation and good videos. Almost getting to 10k subscribers and he deserves it. Will get there someday bro.😍
@SyberMath3 жыл бұрын
I appreciate that! 💖
@242math3 жыл бұрын
you are a great teacher bro, thanks for taking us through the basics of a topic that is so confusing to many students, great job, excellent tutorial
@SyberMath3 жыл бұрын
I appreciate that! 💖
@shreyan13623 жыл бұрын
@Sybermath please continue this series.... this is really helpful 😊🤩
@aashsyed12773 жыл бұрын
YES
@manojsurya10053 жыл бұрын
This video reminds me of all the theorems and basics that I learned for modulo like fermat,Euler totient function,Wilson theorem,Chinese remainder theorem(for solving 3 congruent modulo).great video,u can make a video on each theorem briefly if u can
@haricharanbalasundaram31243 жыл бұрын
I think those would be unlike the videos in this channel, since I think videos are made to help in problem solving, not for teaching itself. There are some MIT OCW lectures on it though, they are great
@wannabeactuary01Ай бұрын
good video - great revision
@kubabartmanski7254 Жыл бұрын
Very neat and elegant introduction to the topic!
@SimchaWaldman3 жыл бұрын
One of my favorite topics. And its symbols... feast for my eyes!
@RealEverythingComputers2 ай бұрын
Thanks for the great explanation - great for an abstract algebra course
@SyberMath2 ай бұрын
Glad you like it!
@repsarklar94203 жыл бұрын
*SYBERMATH LOVERS ...* 👇
@SyberMath3 жыл бұрын
Thank you! 💖
@shreyan13623 жыл бұрын
@@SyberMath i thought you were bringing quadratic congruence as well :|
@aashsyed12773 жыл бұрын
@@SyberMath yes!
@aashsyed12773 жыл бұрын
@@SyberMath i love you!
@akolangto82253 жыл бұрын
Syber Math fan here from the Philippines
@sekarganesan9023 жыл бұрын
Good introduction to modulo.
@SyberMath3 жыл бұрын
Glad you think so!
@clovissimard30995 ай бұрын
TEMPS-HASARD MODULO 3 Pour en revenir au sujet qui nous occupe, dans le monde subatomique, il se pourrait que les phénomènes ne suivent pas une ligne de temps unique, ce qui est conforme à la théorie de la gravité quantique et de la « non-existence » temporelle.
@coefficient13593 жыл бұрын
Great, bring more.
@sergeigrigorev21803 жыл бұрын
Really like this topic! I hope you will continue the Modular Arithmetics series
@deratu55173 жыл бұрын
Wow, I really do like this video! Hopefully there are many more topics that can be explained like this. Have a nice day
@SyberMath3 жыл бұрын
Thank you! You too!
@SamBHodgeАй бұрын
Thanks
@aayushve4267 ай бұрын
great video man ! keep up the work !
@Neemakukreti5421 Жыл бұрын
couldnt understand the first example (x^2 +3_=0(mod7)after the whole adding 7 to both sides thing. To be specific, you equaled 7 to 0,which has been defined as 7's remainder and which is not the number itself... So how can one just add ita remainder to one side, and the dividend to the other..? A reply would be much appreciated
@SyberMath Жыл бұрын
Adding 7 and 0 are equivalent because 7 is congruent to 0 mod 7. You can also think of it this way: all numbers in the form 7k where k is an integer are congruent mod 7. 7 and 0 are in the same group in that sense. All integers can be grouped into 7 groups mod 7 like 7k 7k+1 7k+2 7k+3 7k+4 7k+5 and 7k+6. Any integer can be represented in one of these forms. I hope this helps.
@SyberMath Жыл бұрын
-3 and 4 are congruent mod 7 because they can both be written as 7k+4. Basically they are in the same group (referring to groups I mentioned in my previous reply)
@srividhyamoorthy761 Жыл бұрын
@SyberMath can k be 0
@srividhyamoorthy761 Жыл бұрын
@@SyberMathcan k be 0
@srividhyamoorthy761 Жыл бұрын
After repeatedly watching this i am able to understand so basically if u see for eg 28 is a multiple of 7 so remainder is 0 it can be written as 28 congruent to 0 (mod7 )now if you're to add 7 to 28 it becomes 35 since we're not even into the quotient when we write in modular form 35 also is congruent to mod7 you see so the remainder is 0 so if you are to add add 7 to rhs it still should give the same remainder of -3 that's it .
@manavaggarwal27143 жыл бұрын
Are you coming up with a course on number theory or is it just a randomly posted topic🤔.
@SyberMath3 жыл бұрын
After the mod equation video, there's been some requests. No plan on making a course
@mainaccount041111 ай бұрын
Sir, how do you make your videos, what software do you use to write on?
@SyberMath11 ай бұрын
Microphone: Blue Yeti USB Microphone Device: iPad and apple pencil Apps and Web Tools: Notability, Google Docs, Canva, Desmos
@SamBHodgeАй бұрын
Please let me learn more about this topic
@rafiihsanalfathin94793 жыл бұрын
Can you do video like this a basic olympiad theorem and how to use it, but also longer and deep?, it would help me a lot!
@SyberMath3 жыл бұрын
Will try in the future
@Qermaq3 жыл бұрын
2:42 would 2 and 3 be valid answers? I agree that 11 is congruent to 5 mod 6, but mod 2 would be 1, and mod 3 would be 2, properly. I suppose one can say that 11 is congruent to 5 mod 3 in the same way you can say it's -1 mod 3, as basically in mod n we can add or subtract kn where k is an integer. Is that the right direction?
@SyberMath3 жыл бұрын
Yes. 11≡1 (mod 2) and 5≡1 (mod 2) so they are congruent Similarly, 11≡2 (mod 3) and 5≡2 (mod 3) so they are congruent
@MathElite3 жыл бұрын
First, sooo close to 10k subscribers! Great video
@aashsyed12773 жыл бұрын
few hours left!
@aashsyed12773 жыл бұрын
HOW ARE YOU FIRST ALWAYS?
@adityadarade4533 Жыл бұрын
Love you bro thanks
@SyberMath Жыл бұрын
Np. Thank you! 🥰
@tonyhaddad13943 жыл бұрын
Broo i like modular so much beacaus we can tested in real life and make life easier !!! ofcorse now we computers but it so intersting when we challenge our brain 😍😍
@SyberMath3 жыл бұрын
Yes, true
@MangoLassiYT11 ай бұрын
at 8:38 why are we squaring residues of 4 to check if sol exists or not. I did it using even no as : 2k and Odd no as :2k+1 taking modulo of these two I concluded solution doesn't exists but i don't understand how did you do it usig residues of 4
@SyberMath11 ай бұрын
To find out which number squared leaves a remainder of 2 upon division by 4, we need to check the remainders for all possible numbers which are represented by 4 numbers: 0,1,2,3. Any number greater than these fall into one of these categories by the remainder they leave upon division by 4.
@MangoLassiYT11 ай бұрын
oh so we are taking mod first of num and then squaring the remainder and again taking mod ? @@SyberMath
@aashsyed12773 жыл бұрын
DAMN YOU ARE SO AWESOME....
@tushargupta986 Жыл бұрын
from India
@zainlam9965 Жыл бұрын
another small thing is wilson's theorem
@sakkiediereaper Жыл бұрын
😂 the title should be, Modular Arithmetic: The cheat code to Mathematics!
@SyberMath Жыл бұрын
😁
@aashsyed12773 жыл бұрын
9.8 K SUBS LIKE REALLY!
@srijanbhowmick95703 жыл бұрын
Hey SyberMath , how you doing ?
@SyberMath3 жыл бұрын
Pretty good! How are you? Long time no see! 😁
@srijanbhowmick95703 жыл бұрын
@@SyberMath Yeah exams and all that stuff Finally I am free and can comment as much as I want Thank you once again for keeping me entertained with your math problems during these tough times
@tonyhaddad13943 жыл бұрын
We have *
@SyberMath3 жыл бұрын
You have what? 😁
@aashsyed12773 жыл бұрын
DAMN YOU ARE SO AWESOME......
@SyberMath3 жыл бұрын
Haha, thanks!
@aashsyed12773 жыл бұрын
@@SyberMath WELCOME!
@Barikisu-f9pАй бұрын
I don't understand it
@sukienve81443 ай бұрын
im cooked
@zstar8397 Жыл бұрын
Hey hope you are doing alright just I wanna say that GOD loved the world so much he sent his only begotten son Jesus to die a brutal death for us so that we can have eternal life and we can all accept this amazing gift this by simply trusting in Jesus, confessing that GOD raised him from the dead, turning away from your sins and forming a relationship with GOD...