A Polynomial Equation Adapted from Putnam Exam 2006

  Рет қаралды 15,959

SyberMath

SyberMath

Күн бұрын

Join this channel to get access to perks:→ bit.ly/3cBgfR1
My merch → teespring.com/...
Follow me → / sybermath
Subscribe → www.youtube.co...
Suggest → forms.gle/A5bG...
If you need to post a picture of your solution or idea:
in...
#ChallengingMathProblems #Putnam #polynomialequations
SAME PROBLEMS FROM DIFFERENT PERSPECTIVES
Solving A Cubic Equation in Two Variables:
• Solving A Cubic Equati...
Factoring a cubic polynomial:
• Factoring a cubic poly...
EXPLORE 😎:
Simplifying a Complicated Algebraic Expression: • Simplifying a Complica...
Solving a Polynomial System in Two Ways: • Solving a Polynomial S...
A Trigonometry Challenge: • A Trigonometry Challenge
LINKS:
Similar Problems: www.algebra.co...
Mock Putnam Exams: faculty.math.i...
Kiran Kedlaya's Putnam Archive: kskedlaya.org/...
www.algebra.co...
www.quora.com/...
PLAYLISTS 🎵 :
Number Theory Problems: • Number Theory Problems
Challenging Math Problems: • Challenging Math Problems
Trigonometry Problems: • Trigonometry Problems
Diophantine Equations and Systems: • Diophantine Equations ...
Calculus: • Calculus

Пікірлер: 83
@SyberMath
@SyberMath Жыл бұрын
SAME PROBLEMS FROM DIFFERENT PERSPECTIVES Solving A Cubic Equation in Two Variables: kzbin.info/www/bejne/l363g6aobsiAbNk Factoring a cubic polynomial: kzbin.info/www/bejne/eYGof3qLjsSWo7M
@mohammadamir1985
@mohammadamir1985 3 жыл бұрын
Saw this on Michael Penn's channel. But problem was phrased little differently. This equation shows a glimpse in elliptic curves. Beautiful😍💓. Good place to stop🤣
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@willnewman9783
@willnewman9783 3 жыл бұрын
I don't think the equation relates much to elliptic curves. Yes it is a cubic equation, but it is singular, so its solution set is not an elliptic curve.
@idontknowwhatido3972
@idontknowwhatido3972 3 жыл бұрын
Great Mohammad, I would love if your muslim people taught algebra again as in the middle ages! I miss it so much, I try to study muslim scholars in math in the middle ages. Make it come again please :)
@roberttelarket4934
@roberttelarket4934 3 жыл бұрын
Good place to start some more SyberMath problems.
@shmuelzehavi4940
@shmuelzehavi4940 3 жыл бұрын
@@willnewman9783 You are right.
@aashsyed1277
@aashsyed1277 3 жыл бұрын
Cool syber! Very! I hope this attracts views so that you get more subscribers!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
Cool video! Thanks so much for these joyful moments ❤️💕
@SyberMath
@SyberMath 3 жыл бұрын
💖
@maryrose9385
@maryrose9385 3 жыл бұрын
All real sols for this equation are (x,y)=(-1,-1);(t,1-t) where t is a real number
@carloshuertas4734
@carloshuertas4734 3 жыл бұрын
Another great explanation, SyberMath! I thought that it was just one solution. I figured it out. Thanks!
@SyberMath
@SyberMath 3 жыл бұрын
You're welcome!
@sea34101
@sea34101 3 жыл бұрын
I found a different proof: Step 1 adding and removing 3x.x.y + 3.x.y.y we end up with (x+y)^3-1 that we can factor as a difference of cube, and we get the formula at 3:50 Then, to factor x.x + y.y + 1 - x.y + x+y, we can do the change of variable x = u+v and y = u-v and some square expressions appear naturally and there is one single solution: u=-1 and v=0 hence x=y=-1 Hence we have all the solutions ^^
@chessdev5320
@chessdev5320 3 жыл бұрын
we have to use the sum of three cubes identity here and then its simply equating it with 0. It can be factorised by x³+3xy+y³-1 = (x+y-1)(x²+y²+1-xy+x+y)= 1/2(x+y-1)((x+1)²+(y+1)²+(x-y)²)= 0 hence, i think it has infinite real solutions of x and y which satisfy x+y=1 Or x=y {which has (-1,-1) and (1/2,1/2) as solutions}.
@arpansit3155
@arpansit3155 3 жыл бұрын
This is just a amazing method to aprroach at the solutions. Awesome sir. Congo for ur 30k subscriber.
@SyberMath
@SyberMath 3 жыл бұрын
Thanks a ton! 💖
@rudranarayanswain2382
@rudranarayanswain2382 3 жыл бұрын
This approach was amazing..never thought of that...👍
@mustafizrahman2822
@mustafizrahman2822 3 жыл бұрын
Thanks for your nice explanation.
@SyberMath
@SyberMath 3 жыл бұрын
You are welcome
@manojsurya1005
@manojsurya1005 3 жыл бұрын
Dude the factoring method was awesome 🤩
@SyberMath
@SyberMath 3 жыл бұрын
Glad you liked it!
@MizardXYT
@MizardXYT 3 жыл бұрын
Because the equation is symmetrical, I like the substitution { x = u + v, y = u - v } This turns x² + y² - xy + x + y + 1 = 0 into u² + 2u + 1 + 3v² = 0 which can be simplified as (u + 1)² + 3v² = 0. The only solution is { u = -1, v = 0 }. Substitution back to x and y gives { u = (x + y)/2 = -1, v = (x - y)/2 = 0 } witch is solved by { x = -1, y = -1 }
@danielwest4861
@danielwest4861 3 жыл бұрын
When I worked on it first, I noticed it would look identical to the given equation if I set x+y equal to 1. I’m not sure if my approach was a legitimate solution but that’s how I did it. (x+y)^3 = x^3 + y^3 +3xy(x+y) Love your videos as usual!
@naharmath
@naharmath 3 жыл бұрын
we have: x^3+y^3=(x+y)^3-3xy(x+y). Then the equation becomes: (x+y)^3-1-3xy(x+y-1). By using the equality (x+y)^3-1=(x+y-1)((x+y)^2+(x+y)+1) we obtain the needed factorisation. After that we have a simple equation x^2+(1-y)+y^2+y+1=0. Its discriminant is delta=-3(y+1)^2
@asaradhi
@asaradhi 3 жыл бұрын
Fantastic approach in using the identity
@SyberMath
@SyberMath 3 жыл бұрын
Glad you think so! 💖
@kaslircribs5804
@kaslircribs5804 3 жыл бұрын
Excellent! Thanks professor!
@SyberMath
@SyberMath 3 жыл бұрын
You're very welcome!
@kshitijjain9302
@kshitijjain9302 3 жыл бұрын
Good one, I knew this question could be solved in this way
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@MathElite
@MathElite 3 жыл бұрын
Another awesome problem on Syber's channel I got a solution: x+y=1
@SyberMath
@SyberMath 3 жыл бұрын
Thank you, Math Elite! 💖
@joaquingutierrez3072
@joaquingutierrez3072 3 жыл бұрын
Amazing video!
@SyberMath
@SyberMath 3 жыл бұрын
Glad you think so!
@diogenissiganos5036
@diogenissiganos5036 3 жыл бұрын
That z sub was absolutely ingenious
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@satyapalsingh4429
@satyapalsingh4429 3 жыл бұрын
You are genius .
@vacuumcarexpo
@vacuumcarexpo 3 жыл бұрын
I couldn't find (x-y)^2+(x+1)^2+(y+1)^2=0. On second thought, this is the same transformation used to prove the inequality of arithmetic and geometric means of 3 terms. I should have been aware of this. Instead of that, I used (x+1)^2+(y+1)^2-(x+1)(y+1)=0. Let X=x+1 and Y=y+1, X^2-YX+Y^2=0 X,Y∈R⇒D=Y^2-4Y^2=-3Y^2≧0⇒Y=0⇔y=-1⇒x=-1 ∴(x,y)=(-1,-1) I solved the latter half of this question like this.
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@user-sl9mx5gc4s
@user-sl9mx5gc4s 3 жыл бұрын
From my observation, one solution is x=y = -1. This solution satisfies the equation. It seems you don’t need to any work. Pls let me know if I made a mistake. Thx.
@zakirreshi6737
@zakirreshi6737 3 жыл бұрын
Dividing by y^3 and putting x/y =u
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
Awesome approach , your great 😍
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! 😃
@idontknowwhatido3972
@idontknowwhatido3972 3 жыл бұрын
"You are" or "You´re", people learn it finally. I can remeber it although my english is bad and I am an imbecil, so you can learn it too!
@thomasnielsen1187
@thomasnielsen1187 3 жыл бұрын
10:42 And the solution is a line where y=-x+1 :-o Great equation. Great method. Great solution. And a great video! Yes he found that solution 5 min. before. But It was only the 2nd time it was written that I realized it... :-D
@SyberMath
@SyberMath 3 жыл бұрын
Thank you! 💖
@abuobidashihab
@abuobidashihab 3 жыл бұрын
satisfying solution ♥️
@SyberMath
@SyberMath 3 жыл бұрын
Thanks!
@willyh.r.1216
@willyh.r.1216 3 жыл бұрын
Brilliant.
@SyberMath
@SyberMath 3 жыл бұрын
Thank you!
@kyriakosmonodri4601
@kyriakosmonodri4601 2 жыл бұрын
Maybe because the expression is symmetrical, should x=ψ?
@수하긴
@수하긴 3 жыл бұрын
Lovely
@SyberMath
@SyberMath 3 жыл бұрын
Thanks!
@davidbrisbane7206
@davidbrisbane7206 3 жыл бұрын
You'd think from the symmetry of the equation that one of the solutions must be x = y. So, x^3 + 3xy + y^3 = 1 with x = y Then 2x^3 + 3x^2 = 1 So, 2x^3 + 3x^2 - 1 = 0 So by inspection, x = -1 is a solution. So, x = y = -1 is a solution.
@SyberMath
@SyberMath 3 жыл бұрын
Nice!
@albertmcchan
@albertmcchan 3 жыл бұрын
No. symmetry only gives that if (x,y) = (x1,y1) is solution, then (x,y) = (y1,x1) also satisfy. This is for the same as x1=y1.
@broytingaravsol
@broytingaravsol 3 жыл бұрын
at least x=-1, y=-1
@alessandrorossi1294
@alessandrorossi1294 3 жыл бұрын
I took the 2006 Putnam exam. I don't remember if I got a point or not
@SyberMath
@SyberMath 3 жыл бұрын
Wow! Even taking the test would be a huge success! 😍
@tmacchant
@tmacchant 3 жыл бұрын
The discriminant D=-3(y+1)^2. If y=-1, D=0, otherwise D
@rssl5500
@rssl5500 3 жыл бұрын
Nice
@SyberMath
@SyberMath 3 жыл бұрын
Thanks
@jimmyzhang8443
@jimmyzhang8443 3 жыл бұрын
It is a super action when you X2 at 8minutes
@SyberMath
@SyberMath 3 жыл бұрын
I agree! 😊
@petereziagor4604
@petereziagor4604 3 жыл бұрын
I did enjoy it but you've got to make things clearer next
@SyberMath
@SyberMath 3 жыл бұрын
How?
@idontknowwhatido3972
@idontknowwhatido3972 3 жыл бұрын
No need friend, it was all crystal clear. Please learn more yourself, lacking in knowledge is on your part. Peace friend.
@petereziagor4604
@petereziagor4604 3 жыл бұрын
@@idontknowwhatido3972 okay Maybe my class shouldn't be learning maths like this
@OkiDoki.a
@OkiDoki.a 3 жыл бұрын
Cool
@adgf1x
@adgf1x 3 жыл бұрын
X+y=1
@SyberMath
@SyberMath 3 жыл бұрын
Why?
@leecherlarry
@leecherlarry 3 жыл бұрын
my compi is confused haha: *Reduce[x^3 + 3 x y + y^3 == 1, {x, y}, Reals] // FullSimplify // TraditionalForm*
@MathElite
@MathElite 3 жыл бұрын
rip compi
@charly6052
@charly6052 3 жыл бұрын
Programation
@leecherlarry
@leecherlarry 3 жыл бұрын
@Nirupam dn lol guys . compi did :D
@SyberMath
@SyberMath 3 жыл бұрын
Yessss! 😁
@Germankacyhay
@Germankacyhay 3 жыл бұрын
👍❤
@SyberMath
@SyberMath 3 жыл бұрын
😊
@xuantri334
@xuantri334 3 жыл бұрын
Hay
@뚜비-l8m
@뚜비-l8m 3 жыл бұрын
ㆍ6
@pisethmath4576
@pisethmath4576 3 жыл бұрын
help me sinx=x/100
@SyberMath
@SyberMath 3 жыл бұрын
kzbin.info/www/bejne/oXK6eoali5eHaas
A QuinVigintic Equation (A 25K Special!)
12:52
SyberMath
Рет қаралды 37 М.
A Functional Equation from Putnam and Beyond
12:07
SyberMath
Рет қаралды 273 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
Solving a tricky sum of square roots (Olympiad practice)
5:25
MindYourDecisions
Рет қаралды 477 М.
A Very Interesting Rational Equation
12:43
SyberMath
Рет қаралды 255
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 399 М.
A Cool Functional Equation
12:43
SyberMath
Рет қаралды 114 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
Evaluating a Polynomial Expression in Two Ways
10:40
SyberMath
Рет қаралды 22 М.
if x+y=8, find the max of x^y (Lambert W function)
12:59
blackpenredpen
Рет қаралды 770 М.
An Algebra Problem from Junior Balkan Math Olympiads
8:17
SyberMath
Рет қаралды 22 М.
Factor ANY Quadratic Equation Without Guessing | Outlier.org
14:02
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН