Sir your voice is enough to understand topic thank you so much.
@easystudyplus Жыл бұрын
Thank you so much 🙏🙏🙏
@ankurthakur9834 Жыл бұрын
@@easystudyplus sir just i came after finishing exam your methods to solve made my day.🫡❤ I attempted whole laplace and z transform. And u made that super easy..
@easystudyplus Жыл бұрын
@@ankurthakur9834 Great to hear that my methods were helpful to you in your exam! You can find more content from channel playlist
@abhishekkumarsingh80592 жыл бұрын
Thankyou for the effort you are doing to create such knowledgable studies video
@easystudyplus2 жыл бұрын
Thank you so much and most welcome
@prmod822 Жыл бұрын
Thank You ❤
@easystudyplus Жыл бұрын
Welcome
@vedkulkarni46247 ай бұрын
sir y(-1) aur y(-2) = 0 hai kya? nahi toh z[y(n-1)] and z[y(n-2)] galat ho gaya
@easystudyplus7 ай бұрын
If initial conditions are not given then assume zero
@sirikambham Жыл бұрын
How to find frequency response for that equation??pls reply
@easystudyplus Жыл бұрын
To find frequency response replace z by e^(jw)
@jahidulislamrakib5953 Жыл бұрын
thank u sir💗
@easystudyplus Жыл бұрын
Welcome 😊
@mujoetemi9689 Жыл бұрын
If I have this: H(z) = (-z^(-2)-2*z^(-1)+2*z+z^2)/8T, Which are the coefficiant a and b?
@easystudyplus Жыл бұрын
To determine the coefficients "a" and "b," we first need to express the given function H(z) as a rational fraction of two polynomials in the form: H(z) = (b0 + b1z^(-1) + b2z^(-2)) / (a0 + a1z^(-1) + a2z^(-2)) From the given function H(z): H(z) = (-z^(-2) - 2z^(-1) + 2z + z^2) / 8T We can rewrite the numerator and denominator to match the desired form: H(z) = (z^2 - 2*z^(-1) - z^(-2)) / 8T Now, comparing the coefficients of the numerator and denominator with the general form, we get: Numerator: b0 = 1 b1 = -2 b2 = -1 Denominator: a0 = 0 (since there is no z^0 term in the numerator) a1 = 0 (since there is no z^(-1) term in the numerator) a2 = 8T So, the coefficients are: a = [0, 0, 8T] b = [1, -2, -1]