🎯 Key points for quick navigation: 📚 Darboux's Theorem is discussed, relating to the behavior of derivatives, even if they're not continuous. 🔍 The theorem indicates there's a value within an interval where the derivative image is the derivative itself. 🎯 The proof involves showing that points in the interval are not extremes but within the interior. 🚫 It's impossible for the derivative to exist at the interval's endpoints. 🎢 The analysis uses right and left derivatives to establish logic and contradiction. 🧩 The argument also demonstrates that a derivative cannot be strictly positive or negative over an interval. 🔄 A key part of the proof is confirming the derivative at a certain point is zero, leading to conclusions about the theorem. 🏁 Ultimately, the proof verifies the intermediate value property of derivatives, reinforcing Darboux's Theorem. Made with HARPA AI
@TheStickman20144 жыл бұрын
derivda entonces tambien debe ser continua , porque dices que no?
@StarMaths4 жыл бұрын
hola como estas, perdón por la demora. En este caso la derivada no necesariamente debe ser continua, si así lo fuere simplemente aplicamos el teorema de valor medio y el teorema de Darboux estaría demostrado, pero lo interesante de este teorema es que a pesar que la derivada no es continua igualmente para todo "d" en f'(a)
@daniloramos9103 Жыл бұрын
Cuando dices que hay una delta que tendrá puntos menores que el mínimo, la derivada tiene que ser continua, lo cual no es el caso.