Terence Tao (UCLA): Pseudorandomness of the Liouville function

  Рет қаралды 19,692

Hausdorff Center for Mathematics

Hausdorff Center for Mathematics

Күн бұрын

The Liouville pseudorandomness principle (a close cousin of the Mobius pseudorandomness principle) asserts that the Liouville function λ(n), which is the completely multiplicative function that equals −1 at every prime, should be "pseudorandom" in the sense that it behaves statistically like a random function taking values in −1,+1. Various formalizations of this principle include the Chowla conjecture, the Sarnak conjecture, the local uniformity conjecture, and the Riemann hypothesis. In this talk we survey some recent progress on some of these conjectures.

Пікірлер
Terence Tao: Vaporizing and freezing the Riemann zeta function
1:02:10
Università degli Studi di Milano - Bicocca
Рет қаралды 59 М.
Proofs in mathematics
46:44
Fondation Hugot du Collège de France
Рет қаралды 13 М.
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 98 МЛН
Миллионер | 3 - серия
36:09
Million Show
Рет қаралды 2,2 МЛН
Terrence Tao - Structure and Randomness in the prime numbers, UCLA
42:13
Archy Guo (archyaloha)
Рет қаралды 100 М.
Small gaps between primes, Terence Tao, 1/4.
58:00
ICMU
Рет қаралды 8 М.
Avoid the Collatz Conjecture at All Costs!
47:28
Math Kook
Рет қаралды 53 М.
Almost all Collatz Orbits Attain Almost Bounded Values - Terence Tao
1:01:02
Institute for Advanced Study
Рет қаралды 16 М.
HLF Laureate Portraits: Terence Tao
55:25
Heidelberg Laureate Forum
Рет қаралды 134 М.
Terence Tao, "Machine Assisted Proof"
54:56
Joint Mathematics Meetings
Рет қаралды 182 М.
Lecture 3- Physics with Witten
1:25:12
Witten
Рет қаралды 556 М.
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 98 МЛН