That's right, an infinite product for sin(x) courtesy of Euler (feat. a crazy series for cot(x))

  Рет қаралды 7,949

Maths 505

Maths 505

Күн бұрын

Пікірлер: 56
@sarthak.chatterjee1
@sarthak.chatterjee1 Жыл бұрын
Beautiful, one of my favorite results in all of math! A fun fact/observation: Note how the infinite series for cot(x) you derive is exactly of the form that x - cot(x) has the perfect structure for Glasser's Master Theorem (GMT) to hold! So, we have that the integral from -infinity to + infinity of f(x - cot(x)) dx is exactly equal to the integral from -infinity to + infinity of f(x) dx. This fact/technique/trick, combined with a proper choice of f(x) eases the evaluation of certain tricky integrals, e.g., the integral from -infinity to + infinity of 1/(1+( x + tan(x) )^2) dx. Would love to see some videos on applications of the GMT on your channel!
@maths_505
@maths_505 Жыл бұрын
Noted
@Sai404wastaken
@Sai404wastaken Жыл бұрын
Now that's bonkers
@truIyepic
@truIyepic Жыл бұрын
your videos are getting crazier and crazier, and I love it 🔥 🔥
@maths_505
@maths_505 Жыл бұрын
Thanks mate although this one was alot more on the academic side but I really love this series for the cotangent. Oh and if you differentiate it you get an awesome expansion for csc²(x)
@truIyepic
@truIyepic Жыл бұрын
​@maths_505 personally I find academic problems really interesting, especially as we don't learn this at school yet. And yeah, differentiating does produce a cool expansion, I didn't think of that 😅
@ShinjiCarlos
@ShinjiCarlos Жыл бұрын
Holly mother of Gosh! This proof of cot z is awesome! I searched for that all over internet and textbooks, but never reached the answer. Thanks
@gonzus1966
@gonzus1966 Жыл бұрын
That was awesome. Euler really is the master of us all.
@maths_505
@maths_505 Жыл бұрын
The real top G
@GiornoYoshikage
@GiornoYoshikage Жыл бұрын
I noticed it's possible to derive series expansion of 'cot(πx)' using properties of digamma function (corollary of the Euler's reflection formula for gamma function & series expansion of digamma function). Seems to be short and beautiful result but requires knowledge about gamma-digamma brothers. My first derivation of the expansion was based on Fourier series too
@lorck3261
@lorck3261 Жыл бұрын
Why at minute 8:46 did you write "cos(k.x)" instead of "cos(k.t.x)" if the function is evaluated in "z", and "z = t.x". In this case, wouldn't you have to do: "cos(k.t.x)"? It would not be possible to do a manipulation like: "(-1)^(k)" because "t" is not an integer. Please, I really need this answer.
@MrWael1970
@MrWael1970 Жыл бұрын
Amazing Proof. Thank you for your fruitful effort.
@emanuellandeholm5657
@emanuellandeholm5657 Жыл бұрын
In order to keep our conversation going, in the light of you nuking that last video: Thanks friend! Your channel has been helping me in trying times. And I hope, and anticipate, that you're going to the moon bro!
@maths_505
@maths_505 Жыл бұрын
Bruh I ain't forgetting no one especially the friends I've made. Its cuz of all of you that my channel is doing good alhamdullilah. Hopefully I get to travel the world soon and I really want to meet you and so many others. Nd I'm here whenever you need bro. Keep grinding #hustle #neverstop
@emanuellandeholm5657
@emanuellandeholm5657 Жыл бұрын
@@maths_505 Much love bro!
@maths_505
@maths_505 Жыл бұрын
Oh and I had to nuke that video cuz it was doing really well despite the error in it so I'll reupload it soon.
@emanuellandeholm5657
@emanuellandeholm5657 Жыл бұрын
@@maths_505 It's fine.
@maths_505
@maths_505 Жыл бұрын
@@emanuellandeholm5657 SUIIIIIIIIIIIIIIII
@ShinjiCarlos
@ShinjiCarlos Жыл бұрын
My Gosh, that is jaw dropping. Made my saturday night. Gorgeous!
@ΙΗΣΟΥΣΧριστος-θ2γ
@ΙΗΣΟΥΣΧριστος-θ2γ Жыл бұрын
Masterpiece video. As a small request, could you nuke some more integrals with contour integration. I dont know about others but i am kind of a sucker for complex analysis. You could also follow up with eulers proof of the basel problem since the sin product form and it are basically synonymous.
@maths_505
@maths_505 Жыл бұрын
Oh yes ofcourse I'd love to. Could you do me a favor and DM this to my instagram so I remember
@cameronspalding9792
@cameronspalding9792 Ай бұрын
The formula for the Fourier series term only works when t^2 is not k^2
@banjo2402
@banjo2402 Жыл бұрын
I love the fact that I come here without any knowledge about advanced math (so I don't understand where all the weird functions like zeta, eta and gamma etc. come from) but I can understand the algebra and most of the calculus so I can still enjoy the vids
@MirzaAli-r5c
@MirzaAli-r5c Жыл бұрын
Sin(3)=3 sin(1)-4(sin(1))cubed
@EtienneSturm1
@EtienneSturm1 Жыл бұрын
that was indeed beautiful. Thanks
@kkanden
@kkanden Жыл бұрын
omg no way i was literally searching for proof of this formula today as i knew that euler didn't actually prove this when researching the zeta function. great video! what device do you use to make your videos?
@maths_505
@maths_505 Жыл бұрын
I use my phone
@kkanden
@kkanden Жыл бұрын
@@maths_505 oh do you use a stylus?
@maths_505
@maths_505 Жыл бұрын
Yup
@mikeoffthebox
@mikeoffthebox Жыл бұрын
It is easy to verify Euler's product against the formula from Fourier analysis just by looking at the logarithmic derivative of sin(x)/x.
@idjles
@idjles Жыл бұрын
Your final solution is just a polynomial of degree N with roots at every n*pi and then you let N go to infinity. So the result can bee achieved “by inspection” of the sine graph.
@maths_505
@maths_505 Жыл бұрын
I believe that's exactly how euler did it before providing a formal proof
@cristofer6806
@cristofer6806 Жыл бұрын
I’d love to see more infinite products
@MirzaAli-r5c
@MirzaAli-r5c Жыл бұрын
You can construct trignometric table if you Have value of sin(1)
@yoav613
@yoav613 Жыл бұрын
Nicely done! By the way if you choose x=0.5pi instead of pi,you can derive the series representation of 1/sinx.
@fartoxedm5638
@fartoxedm5638 Жыл бұрын
I have been delaying the proper proof of this formula for so long so it somehow appeared in front of me by itself! thanks
@maths_505
@maths_505 Жыл бұрын
Oh that's awesome mate! And yeah it's a beautiful result. The amazing thing is they extend to complex numbers too cuz complex sin(z) and cot(z) have the same zeros and poles respectively as their real counterparts.
@MirzaAli-r5c
@MirzaAli-r5c Жыл бұрын
Please can you solve Cubic equation Using cardano method
@maths_505
@maths_505 Жыл бұрын
Too easy for the channel. I'm sure you can find videos on KZbin relating to that kinda content.
@ashishraje5712
@ashishraje5712 3 ай бұрын
Thank u
@MirzaAli-r5c
@MirzaAli-r5c Жыл бұрын
Sin(3)=sin(18-15)
@bartekabuz855
@bartekabuz855 Жыл бұрын
Why would you rather write (tsintπ) (-1)^k+1 instead of tsin(tπ) (-1)^k+1? Are you () phobic
@yoav613
@yoav613 Жыл бұрын
Very nice!! It seems that fourier series is very powerful tool,if you only know how to choose ther right function!😃💯
@maths_505
@maths_505 Жыл бұрын
Yeah I actually got this from a pdf file while searching for a proof of the infinite product
@yassinezanned9837
@yassinezanned9837 Жыл бұрын
Wow 🤯
@thomasblackwell9507
@thomasblackwell9507 Жыл бұрын
Hate to be rude but isn’t Eular spelled Euler
@maths_505
@maths_505 Жыл бұрын
Oh yes you're right dear friend.....just fixed it. Thanks
@thomasblackwell9507
@thomasblackwell9507 Жыл бұрын
@@maths_505 You are welcome. Glad that I could be of some use, so thank you in return.
@PyarMatKaro
@PyarMatKaro Жыл бұрын
You told us that x had to be strictly between -pi and pi. Then you set x equal to pi. I don't follow!
@maths_505
@maths_505 Жыл бұрын
Oh the fourier series is perfectly valid for the closed interval between -pi and +pi. And in fact we normally use closed intervals whenever possible....I should've written that instead of the open interval even though it's clear that the series works for pi as well.
@nickruffmath
@nickruffmath Жыл бұрын
V neat 🎉
@maths_505
@maths_505 Жыл бұрын
Thanks
3 RIDICULOUSLY AWESOME infinite zeta series!!!
12:29
Maths 505
Рет қаралды 6 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Contours--Fresnel integral [pi/4 contour]
10:06
Action Physics
Рет қаралды 480
One of THE craziest & most beautiful integrals in existence
9:55
Incredible infinite series!
19:57
Maths 505
Рет қаралды 14 М.
Introduction to Virtual Numbers: A New Era in Mathematics
4:06
Virtual Numbers
Рет қаралды 8 М.
A SPECTACULAR INFINITE SERIES!
11:05
Maths 505
Рет қаралды 7 М.
A Top G Integral
9:25
Maths 505
Рет қаралды 9 М.