3 RIDICULOUSLY AWESOME infinite zeta series!!!

  Рет қаралды 5,937

Maths 505

Maths 505

Күн бұрын

Пікірлер: 32
@MathOrient
@MathOrient Жыл бұрын
This video is absolutely captivating! The zeta function has always held a special place in my heart. The way these series expansions gracefully unfold truly captures the essence of its mesmerizing properties. Thank you for sharing this intriguing exploration of the zeta function and its series expansions.
@thomasrichard7054
@thomasrichard7054 Жыл бұрын
Nice method and video! Can you evaluate the last sum when replacing n by n^2 or n^3 or n^4? I did so, using Maple‘s identify routine.
@maths_505
@maths_505 Жыл бұрын
Another derivative will give me something related to Apery's constant and for n^3 we'll have something related to zeta(4) which has a nice closed form.
@mokhtarmougai5088
@mokhtarmougai5088 Жыл бұрын
​@@maths_505 if I understand that properly, you can get zeta of m+1 by computing n^m or am I wrong?
@manstuckinabox3679
@manstuckinabox3679 Жыл бұрын
Maths 505 reminding us that dealing with sums can be fun and not always cumbersome.
@MrWael1970
@MrWael1970 Жыл бұрын
Very good tricks and smart solutions. Again you are really talented.
@maths_505
@maths_505 Жыл бұрын
Thank you Professor
@mariokraus6965
@mariokraus6965 Жыл бұрын
Fascinating video :-) Could you tell please the link to the gamma'(1/2) proof?
@maths_505
@maths_505 Жыл бұрын
Check out the playlist for Feynman's trick. There you'll find the integral of e^(-x^2)lnx from zero to infinity. I've evaluated a few derivatives of the gamma function there
@mariokraus6965
@mariokraus6965 Жыл бұрын
@@maths_505 Great! Many thanks 🙂
@GeoffryGifari
@GeoffryGifari Жыл бұрын
wait, can we always switch the order of two sums like that?
@gabriel_talih
@gabriel_talih Жыл бұрын
You have to make sure they are converging first, by fubini’s theorem, but he doesn’t mention it in the video cause we assume the sums are converging. A way you can show it is we know that zeta(n)=2. So we can write out the same sum S, bounded by a second summation S_1, replacing the zeta function with 2, and showing that the new upper bound sum S_1 exists, hence the original sum S does too.
@GeoffryGifari
@GeoffryGifari Жыл бұрын
@@gabriel_talih ah i see. what about the summation index? i was thinking that the order of summation can only be interchanged if the indices are independent; an index can't be the limit of summation of another one
@aldomorelli6379
@aldomorelli6379 Жыл бұрын
@@GeoffryGifari I think the indices are independent of one another? We range over all k>=1 and n>=1.
@GeoffryGifari
@GeoffryGifari Жыл бұрын
@@aldomorelli6379 yes, it is in this case
@neilgerace355
@neilgerace355 Жыл бұрын
2:46 What happened to the exponent k? I don't understand that.
@rebel2358
@rebel2358 Жыл бұрын
It’s not an exponent he’s multiplying the top and bottom by k
@neilgerace355
@neilgerace355 Жыл бұрын
​@@rebel2358 thanks, I didn't understand what "expanding" meant.
@Pavan_Gaonkar
@Pavan_Gaonkar Жыл бұрын
Hay can you please suggest me a good book to practice calculus? Foreign author would be great...
@maths_505
@maths_505 Жыл бұрын
What level of calculus? Cal 1, 2 or 3
@Pavan_Gaonkar
@Pavan_Gaonkar Жыл бұрын
@@maths_505 for integration and vector calculus... I guess it is calculus 2&3
@ahsgdf1
@ahsgdf1 Жыл бұрын
Thank you for the nice problems and their solutions. I found it easier to start with letting 1/k^(n+1) = 1/n! int_{0}^{oo} t^n e^(-t k) dt. Then doing the double sum gives the integrals I1 = int_{0..oo} (e^(t/2)-1)/(e^t - 1) dt = ln(4), I2 = int_{0..oo} (1-e^(-t/2)-1)/(e^t - 1) dt = 2-ln(4), and I3 = \frac{1}{2} \int_0^{\infty } \frac{t e^{t/2}}{e^t-1} \, dt = pi^2/4, respectively. Now I1 and I2 were elementary (after an obvious substitution), I3 leads to the sum of the inverse of odd squares. No mention of the the polygamma function and Euler gamma is necessary.
@templateorman3127
@templateorman3127 Жыл бұрын
Hello! Can you please tell what app you use to write on?
@aravindakannank.s.
@aravindakannank.s. 8 ай бұрын
Samsung notes😊 in this period he used his phone yeah I know he is a madman😅
@mokhtarmougai5088
@mokhtarmougai5088 Жыл бұрын
My request has been accepted 🎉😊
@jkid1134
@jkid1134 Жыл бұрын
Excellent request
@mokhtarmougai5088
@mokhtarmougai5088 Жыл бұрын
@@jkid1134 🗿👍
@markus_park
@markus_park Жыл бұрын
How can we be sure that the sum of zeta(n + 1) * x ^ n converges?
@mars_titan
@mars_titan Жыл бұрын
|x|
@slavinojunepri7648
@slavinojunepri7648 Күн бұрын
​@@mars_titanCan you please elaborate? What convergence rule are you referring to?
@slavinojunepri7648
@slavinojunepri7648 Күн бұрын
​@@mars_titanI see exactly what you mean now. Zeta(n+1) is bounded above by 2, allowing the series with zeta(n+1) coefficients to be in turn bounded above by twice the geometric series with common ratio x, which evidently converges since |x|
@mars_titan
@mars_titan Күн бұрын
​@@slavinojunepri7648 exactly!
My take on this on wonderful infinite series from @drpeyam
8:07
Another Absolute BEAST!!! Introducing the Vardi Integral
15:29
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
A Beautiful Riemann Zeta Series
12:06
Maths 505
Рет қаралды 7 М.
Euler’s Pi Prime Product  and Riemann’s Zeta Function
15:23
Mathologer
Рет қаралды 388 М.
Making an Infinite LEGO Domino Ring
8:02
JK Brickworks
Рет қаралды 10 МЛН
Apéry's constant (calculated with Twitter) - Numberphile
10:47
Numberphile
Рет қаралды 587 М.
Incredible infinite series!
19:57
Maths 505
Рет қаралды 14 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 202 М.
A RIDICULOUSLY AWESOME FRACTIONAL TRIGONOMETRIC INTEGRAL!!!
15:53
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.