The Best International Math Olympiad (IMO) Algebra Problem I've Ever Solved

  Рет қаралды 831

Dr PK Math

Dr PK Math

Күн бұрын

Пікірлер: 16
@ronbannon
@ronbannon Күн бұрын
Graphing the given equation will give you a line m+n-33=0 and a point (-33, -33). This is a very nice problem!
@tsur.livney
@tsur.livney 2 күн бұрын
Brilliant! I solved it very differently: First i set a=33 for convenience and so the equation became: A^3 = m^3+n^3+3amn. I substituted a = m+n+delta on both sides, so i got: (m+n+delta)^3 = m^3 + n^3 + 3mn(m+n+delta). Opening the brackets and subtracting both sides by the lhs and rhs of the original equation, all terms left had delta in them so delta=0 derives the set of m+n=33 solutions. Dividing by delta we're left with a quadratic equation whose determinant is -3(m-n)^2, which eliminates all solutions where m is not equal to n. Now substituting m=n in our original equation, we are left with: A^3=2n^3+3an. Now using the same trick: setting this time a=delta-n, simplifying we get: Delta^2*(delta-3n) = 0. So either delta is 0 which implies a=-n=-m which gives the last solution, or a=2n=2m which means m+n=a which is already covered in previous solutions. Overall, for a general non zero value of a: Either m=n=-a - one solution, or m+n=a, which implies all solutions (i, a-i) where min(a,0)
@adityavsx
@adityavsx 2 күн бұрын
you have a talent to explain complex sums so easily…gives me a lot of motiv:)
@MrGLA-zs8xt
@MrGLA-zs8xt 22 сағат бұрын
I agree with you
@iqtrainer
@iqtrainer 12 сағат бұрын
Great work as always professor🎉
@MrGLA-zs8xt
@MrGLA-zs8xt 2 күн бұрын
What a brilliant and nice video professor
@alexkaralekas4060
@alexkaralekas4060 2 күн бұрын
Or just use from the start one of euler's identity a^3+b^3+c^3-3abc= {(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]}/2 For a=m b=n c=-33
@Min-cv7nt
@Min-cv7nt 2 күн бұрын
Isn't that vieta's formula?
@alexkaralekas4060
@alexkaralekas4060 2 күн бұрын
@Min-cv7nt i learned it as a factoring method for a^3+b^3+c^3 my book said it was from euler but I couldn't find it on the internet
@ronbannon
@ronbannon Күн бұрын
That is a most excellent idea! Thanks for pointing this out.
@mathnerd5647
@mathnerd5647 11 сағат бұрын
This is such a nice video
@Min-cv7nt
@Min-cv7nt 2 күн бұрын
You are the best professor
@domedebali632
@domedebali632 2 күн бұрын
What a brilliant video
@redroach401
@redroach401 2 күн бұрын
Can you do ploynomial divison after you find the factor m+n-33 or no?
@ronbannon
@ronbannon Күн бұрын
Yes, that's what I did.
@mathnerd5647
@mathnerd5647 11 сағат бұрын
I also did this too
The Ultimate Integration Weapon
15:13
Dr PK Math
Рет қаралды 3,8 М.
The Most Dazzling Integration Weapon
10:57
Dr PK Math
Рет қаралды 529
Players push long pins through a cardboard box attempting to pop the balloon!
00:31
Симбу закрыли дома?! 🔒 #симба #симбочка #арти
00:41
Симбочка Пимпочка
Рет қаралды 4,7 МЛН
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 206 М.
The Hardest Exam Question | Only 6% of students solved it correctly
17:42
Higher Mathematics
Рет қаралды 238 М.
How to Compute Square Roots in Your Head
14:49
Dave's Math Channel
Рет қаралды 9 М.
Can you Pass Stanford University Admission Simplification Problem ?
20:02
BASIC Calculus - Understand Why Calculus is so POWERFUL!
18:11
TabletClass Math
Рет қаралды 351 М.
You, me, and my first International Math Olympiad problem
31:21
blackpenredpen
Рет қаралды 591 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 130 М.
The longest mathematical proof ever
19:30
Dr. Trefor Bazett
Рет қаралды 87 М.
A Very Nice Math Olympiad Problem | Solve for x? | Algebra Equation
16:33
Spencer's Academy
Рет қаралды 13 М.
Can you Pass Stanford University Admission Simplification Problem ?
13:26