The BEST library for building Data Pipelines...

  Рет қаралды 79,539

Rob Mulla

Rob Mulla

Күн бұрын

Пікірлер: 144
@robmulla
@robmulla Жыл бұрын
If you enjoyed this video please consider subscribing and check out some of my videos on similar topics: - Polars Tutorial: kzbin.info/www/bejne/jHnUn2qrm86coqc&feature=shares - Pandas Alternatives Benchmarking: kzbin.info/www/bejne/gnbLfoSeeNtmgck&feature=shares - Speed up Pandas: kzbin.info/www/bejne/iXKpnqWKo6p7gsk&feature=shares
@riessm
@riessm Жыл бұрын
One thing you said implicitly is quite important: the footprint of polars is waaayyyy smaller than pandas which feels like polars may be a good choice for edge or serverless computing. In those cases I often refrain from using pandas because of the resources needed and the startup time. I then end up doing funny stuff with dicts, classes, tuples… I‘m considering exploring polars for that.
@robmulla
@robmulla Жыл бұрын
Very good points! I need to start using polars more honestly.
@anchyzas
@anchyzas Жыл бұрын
These are phenomenal, I especially like these short 10-15min videos. Thanks a lot for sharing all these relevant and up to date topics!
@BrokenRecord-i7q
@BrokenRecord-i7q Жыл бұрын
Hey Rob, huge fan of your work, keep rolling😀
@robmulla
@robmulla Жыл бұрын
Thanks. Will do!
@joseortiz_io
@joseortiz_io Жыл бұрын
Great video! Always curious about Spark and this gave a great overview of these 3 tools! 💡
@robmulla
@robmulla Жыл бұрын
Thanks for watching Jose!
@fee-f1-foe-fum
@fee-f1-foe-fum Жыл бұрын
Another great video! Thanks Rob! Looking forward to the next stream
@robmulla
@robmulla Жыл бұрын
Thanks for watching. Glad you liked it!
@prashlovessamosa
@prashlovessamosa Жыл бұрын
I like these type of videos as they clear all confusion.
@robmulla
@robmulla Жыл бұрын
Glad you like them!
@aabbassp
@aabbassp Жыл бұрын
I really like your content. Absolutely grade A+
@robmulla
@robmulla Жыл бұрын
Glad you enjoy it!
@lumieraartabima231
@lumieraartabima231 Жыл бұрын
Really useful for me, thank you rob
@robmulla
@robmulla Жыл бұрын
Glad you found it useful Lumiera. Thanks for watching.
@chillvibe4745
@chillvibe4745 Жыл бұрын
Great video! I have a Junior Data Engineer interview coming up and I'm stressed. I don't have any previous working experience in this field. I feel somewhat confident in SQL and Pandas and have been practicing on Strata Scratch. I absolutely hate the Data Structures and Algorithms type of questions like the ones on leetcode and I can't even answer the easy ones. I'm worried that my interview will have those kinds of coding problems. My initial goal was to become a Data Analyst but decided to apply for Data Engineer since it is a junior position.
@robmulla
@robmulla Жыл бұрын
Thanks for the feedback. I hope your interview goes well. It sounds like you are well prepared and will do great! Do let me know how it goes.
@chillvibe4745
@chillvibe4745 Жыл бұрын
​@@robmulla Thanks for the reply! I just had the interview but it was just talking with a recruiter, nothing technical. Hopefully, if they proceed with me I'm going to have to solve coding questions in a week or so. I just hope the coding questions are going to be like the ones on Strata Scratch and not the ones on Leetcode. If they proceed with me and I get the coding questions and a technical interview, I'm definitely going to share how it went.
@ErikS-
@ErikS- Жыл бұрын
"junior data engineer" You need an education of a few years for that and learn quite some math, statistics and what not... Programming is a really different animal than statistics. That companies are hiring programmers will only cause risks of doing wrong analysis.
@thaRealShady1
@thaRealShady1 3 ай бұрын
​@@ErikS- Even as a data scientist you do not need a lot of stats. In a data engineering role its not required at all. The reason demand in actual data engineers is growing is because data engineers and analysts are shit swes
@wilsonsantosmarrola1251
@wilsonsantosmarrola1251 Жыл бұрын
Great content Rob! TKS
@robmulla
@robmulla Жыл бұрын
Glad you like it!
@DarthJarJar10
@DarthJarJar10 Жыл бұрын
Rob, thank you! It's almost as if you read minds! This video sort of went above-and-beyond here! I'd been toying with trying a local session of Spark, and thanks to you, now have the impetus to give it a go!
@robmulla
@robmulla Жыл бұрын
Awesome! The problem I've always run into for personal projects with spark is that the data I'm using is small enough not to warrent it. But it's a great skill to brush up on if you intend to work at a large company.
@tonyle7562
@tonyle7562 Жыл бұрын
Thanks for such awesome content. I love polars and been trying it since your video came out, it would be nice to see you use it to do a data exploration video :D
@danielfischer4079
@danielfischer4079 Жыл бұрын
3:40 couldn't you solve the memory issue by processing the file in chunks?
@Blaze098890
@Blaze098890 Жыл бұрын
With a lot of operations it's not obvious how you do that. Let's say you want to sort a column but you can't load the dataset. Getting the sorted result of each chunk is not enough.
@robmulla
@robmulla Жыл бұрын
That is true, but also depends on the operation you are working with. Something like standard deviation requires the entire dataset to compute. Obviously if you are doing a groupby std you could chunk the data. Essentially that's what these libraries are attempting to do for you.
@aminehadjmeliani72
@aminehadjmeliani72 Жыл бұрын
Thanks for the educational content Rob
@robmulla
@robmulla Жыл бұрын
My pleasure!
@josho225
@josho225 Жыл бұрын
kinda beginner-intermediate learner here, but how do you manage units in these data frames/sets? like datatypes are good and all (ints, floats, boolean), but how to you keep track of your units like seconds, hours, kilometers, miles, degrees etc. Would you just add the units in the header, e.g. "max_delay_minutes"? Sorry if this question is trivial.
@steve_dunlop
@steve_dunlop Жыл бұрын
Hey Rob, this was a great video - clear and concise. Could you explain how you would set up an analysis that would run regularly as the data changed? For example, the flight data you used in this example, let's say that was updated once a week and you needed to update the aggregate stats, and maybe even track the aggregates over time. Thanks!
@robmulla
@robmulla Жыл бұрын
That's a great question. I'm sure others could answer it better but from my experience is you can solve this with: 1) a batch process that runs your aggregations at set intervals like daily and storing them out to summary files/tables. 2) streaming options that I'm not at all experienced with like: spark.apache.org/docs/latest/streaming-programming-guide.html
@bahamutffxii
@bahamutffxii Жыл бұрын
Hello Rob. In your video, you said that you use Anaconda for environment management, but you install all packages through pip. Could you tell me how to make PyPI the main channel in anaconda and reinstall all packages from it? I currently have an anaconda setup with channels: 'conda-forge' , 'defaults' , 'pandas'. How do I rearrange all installed packages from pip respecting all dependencies?
@TheSiddhaartha
@TheSiddhaartha Жыл бұрын
It was a great video and very useful. Adding Spark to the mix was just awesome! For next video, using duckdb and it's benefits vs polars or maybe duckdb alongside polars would be great! Founder of duckdb said that for most companies, it is enough. So testing and discussion on that claim would also be great! Duckdb is said to be using vector search. Discussion on how vector-search is faster or better would also be great. Thanks!
@robmulla
@robmulla Жыл бұрын
Great tip! I've been hearing a lot about duckdb lately so I need to check that out. I think I saw the twitter thread you are talking about. Interesting that they can be combined.
@TheKick32
@TheKick32 Жыл бұрын
Great video! Do you have any thoughts on duckDB?
@robmulla
@robmulla Жыл бұрын
I've never used it but people seem to keep mentioning it so I need to take a closer look! I started using polars after it was mentioned in the comments of my previous videos.
@TheKick32
@TheKick32 Жыл бұрын
@@robmulla I didn't hear about it till this week I think is relatively new couldn't find anything about it older than a month
@arturabizgeldin9890
@arturabizgeldin9890 Жыл бұрын
Great introduction video! Thank you! Looks like most of time for PySpark was to initiate the session itself, it creates once as far as I understand and the reuses for later GetOrCreate() function calls. But anyway, for bigger pipelines Spark will work faster.
@sebastianarias9790
@sebastianarias9790 Жыл бұрын
Hi Rob, What do you recommend me to do if I want to access a 30+ GB sqlite3 database table to access information to display on suppose, a web app or a jupyter notebook?
@Alexander-pk1tu
@Alexander-pk1tu Жыл бұрын
very good video. Can you please make more advanced polars videos? I have start switching to polars from pandas and I really want to learn more about how to do more advanced things with them.
@robmulla
@robmulla Жыл бұрын
Sure. I need to find some good examples to show. The polars docs has some nice ones.
@DarkShine101
@DarkShine101 Жыл бұрын
Great work! It would be cool to see how you can use SPARK with ML. I have been using Pandas to do a lot of ML work recently, but my data grew too large to fit in my RAM. I need to swap to PySpark, but I know my scikitlearn pipelines won't work with it.
@robmulla
@robmulla Жыл бұрын
Good suggestion. I've done some ML with spark, but that was many years back. Usually with deep learning you can train on batches so having all the data in memory is not important. I believe spark tries to follow similar syntax to sklearn pipelines.
@DarkShine101
@DarkShine101 Жыл бұрын
@@robmulla thanks Rob! I thought data needed to be in memory at the same time to do training. It's way easier to split my data and train by chunks.
@casota272
@casota272 Жыл бұрын
@@DarkShine101 You can also leverage Pandas API in Spark to run your training Pandas code as an UDF in spark environment.
@somerset006
@somerset006 8 ай бұрын
Thanks for the great video! I'd like to see a comparison with other distributed Python libraries, such as Modin. Thanks!
@Medina980
@Medina980 Жыл бұрын
Your videos are so nice Rob, I really love them. Could you please share the dataset or indicate us where to find it? Thx
@radek_osmulski
@radek_osmulski Жыл бұрын
I second this, would love to play with the data myself!
@robmulla
@robmulla Жыл бұрын
Thanks guys. The dataset is on kaggle here: www.kaggle.com/datasets/robikscube/flight-delay-dataset-20182022 Upvote if you like it!
@radek_osmulski
@radek_osmulski Жыл бұрын
@@robmulla Thanks a lot, appreciate it! 🙂🙂
@JordiRosell
@JordiRosell Жыл бұрын
Awesome. What do you think about ibis? It can act as a frontend for Pandas, Polars, Spark, etc :O
@robmulla
@robmulla Жыл бұрын
Never heard of it before but will def check it out.
@pierrefaraut8341
@pierrefaraut8341 Жыл бұрын
How do you explain that spark is slower than polars? As theoretically, it should be better right? Maybe we would see better results with spark for larger datasets but Polars aims to be good at that too
@robmulla
@robmulla Жыл бұрын
spark is useful when you can't fit the data in memory but all the overhead makes it slower when running on medium sized datasets. I try to mention that in the video. Just to demo I wanted to show how the synatx works but if the data is HUGE I wouldn't have been able to even open it in pandas.
@jonan.gueorguiev
@jonan.gueorguiev Жыл бұрын
That's great comparison and very relevant. What about 'dask'? Isn't it quite a mature replacement of Spark as well?
@robmulla
@robmulla Жыл бұрын
Great question, I actually have a video on dask in my "pandas alternatives" you should check it out.
@585ghz
@585ghz Жыл бұрын
Polars is so fast!. Great video
@robmulla
@robmulla Жыл бұрын
It sure is! Apprecaite the feedback.
@orlandogarcia885
@orlandogarcia885 Жыл бұрын
Hi! thank you for your video ! a question, what version of pandas you were using ?, I see that you are not using the type "arrow" when you are reading the parquet file with pandas
@legisam1754
@legisam1754 Жыл бұрын
Nice job, Rob. Keep them coming 👍
@robmulla
@robmulla Жыл бұрын
I'll try my best!
@macfrag574
@macfrag574 Жыл бұрын
Where can we get datasets like the one you just showed in the video?
@robmulla
@robmulla Жыл бұрын
The airline dataset is on kaggle here: www.kaggle.com/datasets/robikscube/flight-delay-dataset-20182022
@serbiansuperliga1339
@serbiansuperliga1339 Жыл бұрын
Since couple of days ago, you can use SQL with Polars as well
@efrainsoto2719
@efrainsoto2719 Жыл бұрын
Hi, i recently find your chanel and it's amazing, best think I found. I what to ask you if you know of like a game or a page where I can find cleaning data excercis
@robmulla
@robmulla Жыл бұрын
Glad you found my channel. Do you mean something like leetcode but for data science? I think there are a few out there but I've never used any of them.
@dataflex4440
@dataflex4440 Жыл бұрын
Best channel By a Grandmaster
@robmulla
@robmulla Жыл бұрын
Thank you sir!
@danielfm123
@danielfm123 Жыл бұрын
R is an amazing tool for data pipelines. its native object is a dataframe and has dplyr witch is fast and makes the code easy to read.
@robmulla
@robmulla Жыл бұрын
I agree, but haven't used R in a long time. How does it compare in terms of speed? I thought R was generally slow.
@anupambayen5554
@anupambayen5554 Жыл бұрын
Thanks for this great video
@robmulla
@robmulla Жыл бұрын
Glad you liked it!
@juan.o.p.
@juan.o.p. Жыл бұрын
I think polars could replace pandas in the future once it matures a bit and the community and support grows. Great video as usual! 👌
@robmulla
@robmulla Жыл бұрын
I think it's possible. However people are slow to adopt and speed isn't really the main issue for most people writing pandas code right now.
@mattizzle81
@mattizzle81 Жыл бұрын
There's a bit of a chicken vs the egg problem there. Pandas is mature, tried and true. Polars can only mature if it is compelling enough to switch, but to be compelling, it needs the user base.
@113swaruppatil5
@113swaruppatil5 Жыл бұрын
Which machine learning project should I do for MAAANG companies?
@Micro-bit
@Micro-bit Жыл бұрын
Thanks!!! Great JOB!
@robmulla
@robmulla Жыл бұрын
Glad you liked it!
@jorislimonier5530
@jorislimonier5530 Жыл бұрын
Hi Rob and thanks for the excellent work, I enjoy each of your videos! I would be interested in a video explaining how to put several machine learning libraries pulled from GitHub in a row, for example: Object detection + Keypoints estimation + Person identification. Also, how to manage compatible library versions for all these repos that have different (incompatible) requirements. Thanks!
@Mvobrito
@Mvobrito Жыл бұрын
Can spark be useful if I'm running on a single machine? (like my personal computer) Let's say my PC has 8gb of RAM and I need to work with a 20gb dataset. Can spark split the data somehow and make it work?
@robmulla
@robmulla Жыл бұрын
It should but I would instead 1) Try splitting the data manually and working on it in chunks with pandas or 2) Try polars streaming to see if it would work.
@Lirim_K
@Lirim_K Жыл бұрын
Hi Rob, wonderful video as always! Can you make a video on how to deploy a trained machine learning model (maybe the XGBoost forecaster you made) using Docker?
@robmulla
@robmulla Жыл бұрын
Thanks for the suggestion. I really need to make a video about MLops but I'm not the most experienced in it. Thanks for the idea I'll keep it in mind.
@yassinealaeeddin2229
@yassinealaeeddin2229 Жыл бұрын
hi Mulla, where i can download the file flight ? can you put url please ?
@peterluo1776
@peterluo1776 10 ай бұрын
excellent. Great contents. Thanks for sharing..
@alejandroramirez6761
@alejandroramirez6761 Жыл бұрын
Rob, thank you so much!
@robmulla
@robmulla Жыл бұрын
Absolutely Alejandro!
@ashutoshtiwari4398
@ashutoshtiwari4398 Жыл бұрын
Bro, please create a Playlist on Polars Beginner to expert for faster processing.
@gamer7200
@gamer7200 4 ай бұрын
so when i comes to polars or pandas i should always use polars?
@dataflex4440
@dataflex4440 Жыл бұрын
Please create a video on Gans creating artifical images
@gustavomezzovilla7248
@gustavomezzovilla7248 Жыл бұрын
You should definitely cover Kedro pipeline!
@robmulla
@robmulla Жыл бұрын
Never heard of Kedro before but I'll give it a look for sure!
@gustavomezzovilla7248
@gustavomezzovilla7248 Жыл бұрын
@@robmulla they have a demo in their website of a graphical pipeline of a full Project (starting from the input of data, the filters applyed, the model created and analysis). It works in a way that documentation of projects are build within the development of the project. It is perfect for recuring projects that many people will take a look independently of you been there to explain how it works.
@carlo6195
@carlo6195 Жыл бұрын
Hi there! Is it possible to request the file for practice purposes? Thank you!
@lekalotte2825
@lekalotte2825 Жыл бұрын
Could you maybe do a similiar Video and compare polars with datatable? Thanks alot!
@Dmaster247
@Dmaster247 Жыл бұрын
Can you do a tutorial for building a data pipeline using industry standard tools?
@sylarfx
@sylarfx Жыл бұрын
I would also add dask to the comparison
@robmulla
@robmulla Жыл бұрын
I compare dask on my pandas alternatives video!
@hunghai6378
@hunghai6378 Жыл бұрын
that's great video
@Ant1-y
@Ant1-y Жыл бұрын
Thanks a lot but Sparks is a nightmare for me to install on my windows PC
@robmulla
@robmulla Жыл бұрын
Oh man. I can't help you there. Why not install ubuntu dual boot?
@bbrother92
@bbrother92 9 ай бұрын
@@robmulla how did you installed it?
@soren-1184
@soren-1184 Жыл бұрын
What about dask?
@teejin
@teejin Жыл бұрын
Nice MKBHD shirt!
@robmulla
@robmulla Жыл бұрын
😊
@guocity
@guocity 8 ай бұрын
Pandas work much better in unclean data, pyarrow give so much headache in data conversion error: ArrowInvalid: Could not convert '230' with type str: tried to convert to double make many dependencies unusable: to_parquet() convert pandas to polars open csv in data wrangle, save as parquet in data wrangle
@JeetJhaveriD
@JeetJhaveriD Жыл бұрын
TLDR; Polars was the fastest and Pandas was the slowest
@robmulla
@robmulla Жыл бұрын
What about spark?
@JeetJhaveriD
@JeetJhaveriD Жыл бұрын
In the middle? That's what the video says, isn't it?
@manjeetkumaryadav4377
@manjeetkumaryadav4377 Жыл бұрын
Excellent
@robmulla
@robmulla Жыл бұрын
Thank you so much 😀
@markokafor7432
@markokafor7432 Жыл бұрын
Polars is rust based which explains the fastness
@robmulla
@robmulla Жыл бұрын
Yep! I have a whole video on polars/rust you should check out.
@nadavnesher8641
@nadavnesher8641 Жыл бұрын
Love it
@robmulla
@robmulla Жыл бұрын
Thanks for watching Nadav!
@harikrishnanb7273
@harikrishnanb7273 Жыл бұрын
have you ever tried ibis?
@robmulla
@robmulla Жыл бұрын
I have not. Other have mentioned it and duckDB
@alexanderdiazquintana3313
@alexanderdiazquintana3313 11 күн бұрын
So mmmm...awesome....why u don't include ....duckdb ..in all this ....staf🔥
@Panucci75
@Panucci75 Жыл бұрын
Lovely
@robmulla
@robmulla Жыл бұрын
Thanks!
@jorge1869
@jorge1869 Жыл бұрын
I use Dask instead PySpark.
@robmulla
@robmulla Жыл бұрын
I've used dask in previous videos with poor performance on a single machine. But it is an option for distributed. Check out this video: kzbin.info/www/bejne/gnbLfoSeeNtmgck
@kevinoudelet
@kevinoudelet Жыл бұрын
thx!
@tacorevenge87
@tacorevenge87 Жыл бұрын
Koalas is good too
@robmulla
@robmulla Жыл бұрын
Whoa! First time I've heard of this but googled and it looks cool. Pandas API on spark... I need to check it out more.
@tacorevenge87
@tacorevenge87 Жыл бұрын
@@robmulla it’s really good . Runs on top of pyspark . Have you also tried dask?
@TeresaGonzalez-r2q
@TeresaGonzalez-r2q 3 ай бұрын
Jones William Rodriguez Elizabeth Miller Joseph
@barmalini
@barmalini 6 ай бұрын
I really hate these stock video interruptions
@robmulla
@robmulla 6 ай бұрын
What do you mean? The advertisements from youtube?
@TJ-hs1qm
@TJ-hs1qm 5 ай бұрын
Never mention....Rust 😂
@valueray
@valueray Жыл бұрын
U using Py 3.8? Srsly, go update to 3.11 and test again
@robmulla
@robmulla Жыл бұрын
Why?
@valueray
@valueray Жыл бұрын
@@robmulla Performance 3.11 is really much better
@MissMagicAriel
@MissMagicAriel Жыл бұрын
Hello! How can I contact you directly via email or telegram for buisness iinquiries?
@iProxySupport
@iProxySupport Жыл бұрын
Hello! How can I contact you directly via telegram or email?
Speed Up Your Pandas Dataframes
11:15
Rob Mulla
Рет қаралды 72 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 21 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 14 МЛН
What is Data Pipeline? | Why Is It So Popular?
5:25
ByteByteGo
Рет қаралды 220 М.
DuckDB vs Pandas vs Polars For Python devs
12:05
MotherDuck
Рет қаралды 20 М.
PySpark Tutorial: Spark SQL & DataFrame Basics
17:13
Greg Hogg
Рет қаралды 56 М.
7 Tips To Structure Your Python Data Science Projects
14:49
ArjanCodes
Рет қаралды 119 М.
Make Your Pandas Code Lightning Fast
10:38
Rob Mulla
Рет қаралды 187 М.
Python Polars - Fastest Data Science Library!
20:54
Python Simplified
Рет қаралды 16 М.
The ONLY PySpark Tutorial You Will Ever Need.
17:21
Moran Reznik
Рет қаралды 145 М.
Data Pipelines Explained
8:29
IBM Technology
Рет қаралды 168 М.
A Gentle Introduction to Pandas Data Analysis (on Kaggle)
38:45
Rob Mulla
Рет қаралды 138 М.
This INCREDIBLE trick will speed up your data processes.
12:54
Rob Mulla
Рет қаралды 270 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН