Came for The Density of States, sat for the full lecture. Thank you sir!
@MuhammadAli-px1ob5 жыл бұрын
Dear Prof M R Shenoy! You are simply Awesome!
@PoojaGupta-mn8qe5 жыл бұрын
Really appreciate ur efforts to mk evrything clear in simple way.. Thanks alot
@bharatheshbadadamath53947 жыл бұрын
Nice explanation! enjoying your series of lectures.
@aryansudan2239 Жыл бұрын
proud to be taught by this legendary prof
@deeptisharma98174 жыл бұрын
The Best explanation
@akashgugnani5464 жыл бұрын
Very simple and beautiful derivation for density of states.
@VimalPandey-yu1gl8 ай бұрын
Amazing Lecture Sir.
@anitamekap65842 жыл бұрын
Awesome explanation Sir
@adijopp1z12gorama2 жыл бұрын
Sir plz clear one the whose effective mass is greater of electrons in C.B and V.B or of holes in valance band and whats the reason
@priyamsaha3 жыл бұрын
sir i am having a minus sign in the derivatrion of density of states in the valance band due to dE/dK
@leehw749911 ай бұрын
Great lecture
@madhumitabanerjee77314 жыл бұрын
Sir you are really great.
@amanladdu96643 жыл бұрын
sir yeh 3d me h koi or se dimension me
@asriedagnaw99583 жыл бұрын
i have got some information about the density of state.tank you
@debabratadey9233 жыл бұрын
absolutely brilliant
@PushparajPathak11 жыл бұрын
Why is the k-space considered spherical?
@prajneshkumar64478 жыл бұрын
I was wondering the same..
@vjencislavbarac14998 жыл бұрын
if you draw one milion dots in each direction, one after another, which would look like line and then if you take large number of these lines. Each line would be equally long, the whole picture would look like a sphere, simple as that. If you consider other geometrical shape, you know that these lines cant be equally long.
@mursalayub51676 жыл бұрын
@@vjencislavbarac1499 very straightforward
@himvar0074 жыл бұрын
we are figuring out number of states at value k. what all points in k space have same magnitude of k? kx^2+ky^2+kz^2=constant. it will lie in a sphere.
@laks318 Жыл бұрын
Thanks a ton Sir!!!!!!!!!❤
@sandeepchhangani9399 жыл бұрын
how to calculate volume between k & k+dk radius octant ,? if some one know then please explain
4 жыл бұрын
@sharma this should be divided by 8 as you want the first octant. Recall that the unit volume in spherical coordinates is dV=r^2sin(theta)dr dtheta dphi. In the first octant, theta and phi runs from zero to pi/2. Integrate over the angles you get the volume between r and r+dr giving: pi*r^2 dr/2.
@10810909311 жыл бұрын
Because k_x, k_y and k_z can take large number of values which are m(pi/L_x), p(pi/L_x) and q(pi/L_x) respectively where m, p and q are integers. But my doubt is, why does he consider only the 1st octant to calculate the number of states and not the whole spherical region? Also, he says that m, n and p cannot be 0. Is that is the case, how can k=0 (gamma point) ever be realized because for gamma point all three k_x, k_y and k_z must be zero, i.e. essentially m, p and q must be zero?
@mohammedsahal76 жыл бұрын
Only first octant is valid since the n can take only positive integer values in the relationship between energy and k
@himvar0074 жыл бұрын
kx can take both negative and positive values but we have considered standing waves which is superposition of positive and negative waves i.e. e^(jkx)+e^(-jkx). so we are just taking magnitude of k which is always positive.
@Oindrih6 жыл бұрын
why is Ec taken as zero.. for the dE/dk value... are we following the boundary condition here.
@himvar0074 жыл бұрын
total energy of electron = PE + KE. KE = p^2/2m. in derivation KE is taken. in conduction band, EC is the minimum energy and is the PE of electron. if electron is in any state above EC the difference in energy is because of KE.
@amanladdu96643 жыл бұрын
at 24.35 why ec become o
@sunil53306 жыл бұрын
One question, if K is discrete, then how can we take the integration/derivation or delta-k?
@himvar0074 жыл бұрын
K has very large number values from 0 to pi/a in step of pi/L. L is sample width and a is atomic distance. so pi/L is ~billion times smaller than pi/a. Truly it is discrete but going in very very small step makes it looks continuous and results are accurate from practical considerations.
@shaikhnoman28794 жыл бұрын
@@himvar007 hello friend. What is step & what is L ,please say in briefly. & How we say that, the pi/L is billions time smaller than pi/a......thanks
@10810909311 жыл бұрын
My doubt is, why does he consider only the 1st octant to calculate the number of states and not the whole spherical region?
@mursalayub51676 жыл бұрын
@@dasgoood2811 nice
@maneeshpant55543 жыл бұрын
well each sate in k space is eigen value solution of the Schrodinger equation and represented by a tiny cube of length pi/L since length cant be taken negative that's why we need to consider only the first octant.
@marcos12899 жыл бұрын
00:20
@irtizahasan61077 жыл бұрын
marcos1289 wads Ur pblm dude
@mursalayub51676 жыл бұрын
@@irtizahasan6107 hahha
@mursalayub51676 жыл бұрын
42:04
@new-jj5il13 күн бұрын
❤
@gauravsemwal19127 жыл бұрын
Thanx.....
@mishuk20086 жыл бұрын
why k space needs to be a sphere?
@himvar0074 жыл бұрын
we are figuring out number of states at value k. what all points in k space have same magnitude of k? kx^2+ky^2+kz^2=constant. it will lie in a sphere.
@ashokans9139 жыл бұрын
First of to find the one octant value, and then to integrated to 8 times