Man i was about to sleep..Nevermind i will watch this first!
@alexandrebriard91754 жыл бұрын
When you watch this video after 3B1B : *you know i'm kind of a mathematician myself*
@aaronaugust79043 жыл бұрын
I know it is pretty randomly asking but does anybody know a good site to stream newly released series online?
@franklindrake32253 жыл бұрын
@Aaron August I dunno atm I've been using Flixportal. Just google for it =) -franklin
@aaronaugust79043 жыл бұрын
@Franklin Drake thanks, I went there and it seems like they got a lot of movies there :D I appreciate it !!
@franklindrake32253 жыл бұрын
@Aaron August no problem xD
@Draginx3 жыл бұрын
This guy is awesome, I love maths, physics, and engineering, and this guy explains everything so great!
@benjamingiribonimonteiro93936 жыл бұрын
Thanks for featuring me at the beggining! Love your channel
@blackpenredpen6 жыл бұрын
Benjamin Giriboni Monteiro : )))
@benjamingiribonimonteiro93936 жыл бұрын
@@blackpenredpen :)
@CalculusPhysics6 жыл бұрын
i think the thumbnail has a slight typo, shouldn’t it be n! in the denominator, not simply n?
@diabolicallink6 жыл бұрын
Chloe I thought so too
@alejrandom65923 жыл бұрын
3:04 e^x + sinx "can't even do the common denominator" *laughs in complex definition*
@ado222223 жыл бұрын
but where did he get the sinx from?
@alejrandom65923 жыл бұрын
@@ado22222 from his imagination
@ado222223 жыл бұрын
@@alejrandom6592 oh ok so its not like he is saying 1/1-x somehow equals to sinx right? Cool Because i though he meant that and it was really driving me nuts
@alejrandom65923 жыл бұрын
@@ado22222 yeah don't worry it was just an example ;)
@angelmendez-rivera3516 жыл бұрын
Papa Taylor has blessed us.
@baoradeon8784 жыл бұрын
Love the way he explained how does the Taylor series work. THANK YOU
@____Paul____8 ай бұрын
I appreciate that you started with showing the usefulness of Taylor Series before diving into the details of how to use it! Edit: This video is only showing the formula, not how to work with Taylor series.
@phorusrhacidaeaves811 Жыл бұрын
can anyone help to explain what he said 'best friend' on 4:57 to be?😅😅😅
@BenjaminKeilty6 жыл бұрын
For anyone curious about the "unless you add a circle" comment at 0:40: The mediant en.m.wikipedia.org/wiki/Mediant_(mathematics) is pretty cool and useful in math competitions if you know how to use it
@abhilashsaha99314 жыл бұрын
You are God.
@djchavaz Жыл бұрын
For 1/(1-x) expansion using infinite geometry series is true when -1
@jamesoneill50702 жыл бұрын
This formula was developed by Brook Taylor, an English mathematician (1685-1731) so it's over 300 years old.
@OLApplin6 жыл бұрын
:O ! FOURIER SERIES ! I just can't wait (my favorite math subject ever)
@rob8766 жыл бұрын
1/2 an hour plus a 1/3 of an hour = 30 mins plus 20 mins = 50 mins = five sixths of an hour. 0.83333... = 8/10 + 1/30 = 48 mins + 2 mins = 50 mins.
@benjaminbrady23856 жыл бұрын
Can't wait for that Fourier series video!
@ski34able4 жыл бұрын
I am soooo glad I clicked no this video! Best explanation on youtube so far
@PrynPucksomporn7 ай бұрын
Finally, this vid is 10x understandable than my lecture
@ArhamKhan05 Жыл бұрын
thats amazing sir great explanation thanks ❤
@opufy Жыл бұрын
5:15 Taylor (the dad) series haha
@KotaCraig3 жыл бұрын
I hope you know how many people you've helped! Thank you!
@kendalwilliams5128 Жыл бұрын
I loved how you explained it. Thanks!
@math4math6086 жыл бұрын
Hopefully, Fourier Series will be AS GOOD AS THIS VIDEO! Thanks, Very Detailed Explanation!
@charleswoodard84783 жыл бұрын
Astounding how little attention this material attracts as opposed to more high concept rigamarole and dramatized frivolities done in the name of fame. This should depose the current mainstream passtimes, we’d be far better off…
@sayhan36313 жыл бұрын
Amazing video ! I enjoyed watching it
@moaydsparklug83116 жыл бұрын
Hi I'm physicist , fall in love with taylor series helped me alot of times ,anyway I like your videos 😁
@slayervii22806 жыл бұрын
First I was like why is the first term of the series in the thumbnail equal to infinity then I realised there was no factorial sign on the "n"
@torung9606 Жыл бұрын
omggg i love youuuu
@ragnarlothbrok40904 жыл бұрын
Thanks! You got me through High School!!!!
@quantumcity66796 жыл бұрын
Awesome job... I'm curious about next video 😘
@AlessandroZir9 ай бұрын
good! the comparison with decimals was very useful;
@iremkarakas67703 жыл бұрын
this man i really love you .
@ado222223 жыл бұрын
sorry dumb question. why would 1/(1-x) become sinx at 3:03
@suellenalmeida30405 жыл бұрын
I have been loving your videos! Thank you so much :D
@jibran84106 жыл бұрын
so using that f^0 (a) = 0! x Cn can you say that Cn = f(a) ? where n is 0
@matj126 жыл бұрын
A note for 1:13: If you find it hard to remember the digits of 1/3, there is a mnemonic for the first 25 digits: kzbin.info/www/bejne/hJrRo4eNZqeraLs
@blackpenredpen6 жыл бұрын
Hahaha, nice!!!!
@alejandroill5 жыл бұрын
0:40 “unless you have a circle right here” ??? I’m so confused
@tpstrat144 жыл бұрын
the main problem you had in that moment is that you didn't hear him say "let's not talk about that". He shouldn't have even mentioned it LOL. Because of course anything in math can be expanded on. ANYTHING. In other words, you can always get confused at any point if the teacher tries to expand the idea beyond what you're ready for.
@abhilashsaha99314 жыл бұрын
Look up the word "mediant"
@albatrosslove8654 Жыл бұрын
there is summation (n=o to inf ) but you are diff n -times means this is finite then how can we take the limits upto inf
@bogdancorobean92706 жыл бұрын
One thing I don't quite get is how do we know we can represent functions as power series. I mean, why would someone 200 years ago or whenever would have thought of trying something like this? I know it works out, but it seems so unintuitive. Same for power series solutions to differential equations.
@ssdd99116 жыл бұрын
4ier series next?
@blackpenredpen6 жыл бұрын
s sdd Yup, I call it fouryay
@gregoriousmaths2664 жыл бұрын
Lol fouryay
@nafissaatlagh2066 жыл бұрын
Hell we need a love reaction in youtube 😐❤
@eustacenjeru72252 жыл бұрын
good explanation
@zahraa-dm5cy4 жыл бұрын
0:09 my goal for this year .......
@emrealpozavc7836 жыл бұрын
Thank you, can you make a video about lagrange error bound ?
@omkarsinghchauhan30536 жыл бұрын
i love that thing he holds in his hand btw it is mike or anything else
@angelmendez-rivera3516 жыл бұрын
Omkar Singh Chauhan it is a Mike
@user-wu8yq1rb9t3 жыл бұрын
You can find any relation between Taylor (the mathematician) and Taylor (the singer; Taylor Swift) ?!! *Taylor Series* and *Taylor Swift* !!?
@carultch2 жыл бұрын
That's most likely just a coincidence. The Taylor series is named after Brook Taylor.
@MrHK16366 жыл бұрын
Hello, I need help in this problem: If there is a polynomial such that f(x+5)=f(5-x) with 4 real roots. How should you calculate sum of all roots. Don't tell me what answer is. I want a little hint 😅
@MrHK16366 жыл бұрын
And that condition is true for all real values of x
@snillie6 жыл бұрын
Since f(x+5)=f(5-x), that means if r_1 and r_2 are roots, you can immediately know what the other two roots are (assuming that knowing r_1 doesn't lead you to r_2 and vice versa). If you can find the other two roots, you should be able to solve the problem c:
@MrHK16366 жыл бұрын
Thank you, right answer is 20, isn't it?
@sajankumarkar823710 ай бұрын
Shouldn't 1/2 + 1/3 be 5/6?
@aphelmusonda5253 Жыл бұрын
youre a hero sir, thank you
@jurihorstmann6453 жыл бұрын
To sad that she stopped making proofs to start a music career. Taylor Swift is a math genius!
@carultch Жыл бұрын
This is named after Brook Taylor. A completely different person.
@giuseppeagresta14259 ай бұрын
@@carultchit's a joooooke
@epicsushi58177 ай бұрын
@@carultchr/woosh
@macglone7 ай бұрын
That was physically painful. Well done!
@douro205 жыл бұрын
Is it the same Taylor for whom the Taylor Manual is named?
@carultch Жыл бұрын
It's named for Brook Taylor
@wuwu159811 ай бұрын
Thank you, father
@AlbinoJedi4 жыл бұрын
Can you explain setting a=0 or any other number and why? I don't get the "centering".
@dawsonbowhay67964 жыл бұрын
A Taylor series is infinite, but in practice we may only use the first few terms of the Taylor series as a close approximation to the true function. Therefore, all the [infinite] remaining terms that aren't used are equal to the error between the approximation and the true function. If you graph the true function and the approximation, you will see that there will be zero error at x=a, but as x gets further away from the value a, the error increases. You might choose a certain value of a based on which values of x you want your approximation to be accurate for. Or, you might have to use a non-zero value of a if the function is undefined at x=0 (take for example y = 1/x, where you can't divide by zero so a=1 would probably be used).
@iamimran58805 жыл бұрын
Very nice sir live from India
@loukafortin62256 жыл бұрын
Nice video there! I'm one year ahead of my first classes of calculus, so I'm having a hard time to find a way to calculate the arc length of the function f(x)=x^3. I can't get pass the step : int of sqrt(x^4+1/9)dx. Please help xO. I definitely KNOW there's a way arghhh and it's haunting me lol
@angelmendez-rivera3516 жыл бұрын
Unfortunately, you cannot find the antiderivative of this function in terms of single-variable elementary functions. There is just no answer you can give using arithmetic operations, exponents or powers, trigonometric functions, hyperbolic functions, or the inverses or compositions of any of the above. Wolfram Alpha gives an answer that requires imaginary numbers and uses special elliptical integrals.
@loukafortin62256 жыл бұрын
@@angelmendez-rivera351 oh okay! I needed this to stop getting upset of not finding anything. 'guess I shouldn't mess with those things too much. Anyways, thanks!
@bigalturn14 жыл бұрын
can you derive the Lagrange Error Bound formula please
@tarekhajjshehadi46706 жыл бұрын
Do you know what's so special about the number 1729?
@blackpenredpen6 жыл бұрын
Tarek Hajjshehadi yes
@AndDiracisHisProphet6 жыл бұрын
yes
@marcellomarianetti17706 жыл бұрын
Yes, we all know
@ironmc79726 жыл бұрын
1729 can be written in sum of 2 cube numbers in 2 ways. 1729=12^3+1^3 and 1729=10^3+9^3
@メ乇しム尺6 жыл бұрын
@@ironmc7972 That's right, but what makes 1729 so special is that it's the smallest number that can be written as a sum of two cubes in two different ways
@alejandroill5 жыл бұрын
"My biggest goal to 2020 is to get selected to the Brazilian team in IPhO 2021"
@JureRatkovic6 жыл бұрын
"Let's look at the jerk of that... no just kidding"
@gourabghosh55746 жыл бұрын
A circle of radius 1 cm rotates and move like a wheel around another circle of 3 cm radius and returns to its initial position. How many times does the citcle of radius 1 cm rotate? The answer is 4. Explain why it is not 3 ie Problem with the solution (circumference of the bigger circle/circumference of the smaller circle)
@Wecoc16 жыл бұрын
You want us to make your homework, pal?
@UrielMartínezLópez-z9u11 ай бұрын
U the GOAT Saludos a toda la raza de la FESC
@_PowerPlay_55Ай бұрын
great man!
@khalilmohammed22973 жыл бұрын
Thank you so much
@Kumar-oe9jm6 жыл бұрын
How to kill a constant? bprp 2019: by integration
@y.z.65176 жыл бұрын
How to kill a positive number? By differentiation.
@principiamathematica54146 жыл бұрын
When the note becomes notice!
@gediman05122 жыл бұрын
you are a great man..keep it up...in addition to this I would asked you one thing.I would like to physics could you announced the best lecturer for physics like you..
@poornimabalachandran10044 жыл бұрын
Good job👍👏👏
@الفيزياء-ب2ي4 жыл бұрын
1/2+1/3=5/6 no 2/5 :) 0:32
@oil1263 Жыл бұрын
this guy is fking underrated,
@cptn_n3m0126 жыл бұрын
Can you integrate the gamma function ?
@angelmendez-rivera3516 жыл бұрын
leo bonneville You can, you simply cannot express it in terms of any other well-studied functions, as far as I understand. At best, you can numerical approximations for the definite integral, and the indefinite integral can only be expressed as the definite integral of another function, which is itself not solvable in terms of elementary functions.
@Roshankongala3 ай бұрын
what is professor holding in his left hand?💀
@guliyevshahriyar Жыл бұрын
thanks a lot
@roshannanayakkara5865 Жыл бұрын
Excellent
@dr.rahulgupta75734 жыл бұрын
Excellent presentation Sir.Thanks with sincere regards. DrRahul Rohtak India
@abtahi._2 жыл бұрын
beautiful
@armandoski-g4 жыл бұрын
7:45 you're an all star
@louisecaustur79964 жыл бұрын
that was beautiful :o
@subhopal6 жыл бұрын
FIND OUT THE DERIVATIVE OF x! WRT x
@subhopal6 жыл бұрын
If f(x)=x! then, f'(x)=?
@subhopal6 жыл бұрын
Find the derivative of factorial x wrt x
@yoavcarmel12456 жыл бұрын
it is something with the gamma function, you cannot get a nice solution for that :(
@srpenguinbr6 жыл бұрын
x! is a discrete function Unless you consider the Pi function, which does give an answer, but in terms of improper integrals or other special functions
@srpenguinbr6 жыл бұрын
If you don't consider the pi function, then x! is not differentiable.
@ggssjoker49313 жыл бұрын
TQVM
@sebastianmeier50026 жыл бұрын
🔥🔥🔥
@BlokenArrow6 жыл бұрын
1/2 plus 1/3 does equal 2/5 in statistics.
@angelmendez-rivera3516 жыл бұрын
BlokenArrow How?
@XESolar6 жыл бұрын
So good!
@bullinmd Жыл бұрын
Cantor proved it is impossible to "count" real numbers.
@OonHan6 жыл бұрын
1/2 + 1/3 is not 2/5 :(((
@PhilBoswell6 жыл бұрын
There is a specific operation which does in fact work this way, but the name escapes me right now. The operation which combines a/b and c/d to give (a+c)/(b+d) has the interesting property that it guarantees a new fraction which lies between the two source fractions and is very helpful in various proofs, the nature of which also escapes my memory right now. Look, it's Friday and it's been a tiring week, OK? Somebody else pick up the thread? ;-)
@clubstepdj6 жыл бұрын
you call it "the dad", papa flammy call it "papa taylor"
@manuelodabashian6 жыл бұрын
Thanks!
@MozwGamer5 жыл бұрын
If I fail Calculus 3, I'll a top subscriber by next year
@Patapom36 жыл бұрын
Amazing!
@pratikmanurkar94216 жыл бұрын
Nice
@lucasfrykman58896 жыл бұрын
Can you prove the Taylor series tho?
@blackpenredpen6 жыл бұрын
Lucas Frykman What do u mean?
@angelmendez-rivera3516 жыл бұрын
What do you mean “prove the Taylor series”? What about it needs proof?
@ayoubsbai63395 жыл бұрын
i love you :)
@maginobionrequiem91676 жыл бұрын
COMEDY KING XD
@bullinmd Жыл бұрын
I'd rather use MacLaurin Series.
@cleahey63504 жыл бұрын
love you x
@gulzira76425 жыл бұрын
How are you
@angelmendez-rivera3516 жыл бұрын
Mr. Cao, I have a number theory challenge for you. Consider the pair of numbers n - k and k + 1, where n is a natural number and k = 0, 1, ..., n - 1. For what values of n are n - k and k + 1 co-prime (relatively prime, they share no common factors) for all k? In other words, for what values of n is gcd(n - k, k + 1) = 1 for all k satisfying the conditions I established?
@АлексейШубин-н8й6 жыл бұрын
Hi, go int 1/(x^n+a^n)dx, n=2k, n=2k+1
@angelmendez-rivera3516 жыл бұрын
Алексей Шубин Not a particularly special exercise or problem. Since a is an arbitrary real number, we know there exists some b such that b^(2k) = a^(2k + 1). This simplifies the problem to anti-differentiating 1/(x^(2k) + b^(2k)).