The Four Fundamental Subspaces and the Fundamental Theorem | Linear Algebra

  Рет қаралды 5,875

Wrath of Math

Wrath of Math

Күн бұрын

Пікірлер: 11
@WrathofMath
@WrathofMath 4 ай бұрын
Support this course by joining Wrath of Math to access exclusive and early linear algebra videos, plus lecture notes at the premium tier! kzbin.info/door/yEKvaxi8mt9FMc62MHcliwjoin Linear Algebra course: kzbin.info/aero/PLztBpqftvzxWT5z53AxSqkSaWDhAeToDG Linear Algebra exercises: kzbin.info/aero/PLztBpqftvzxVmiiFW7KtPwBpnHNkTVeJc
@胡家瑋-w7n
@胡家瑋-w7n Ай бұрын
This guy tried to teach ALL the content of our whole semester's Linear Algebra in 20mins and he done it better than my prof!
@jamesfehrmann
@jamesfehrmann 4 ай бұрын
Awesome video. There's a lot going on in a sentence like "the solutions to Ax=0 are the vectors in R^n that are orthogonal to every row vector of A." And it might not be obvious why the dot product is an effective demonstration of this. It might help build some intuition for this by remembering that in 2D/3D space the dot product of two vectors shows the projection or shadow one vector casts on the other. Orthogonal vectors can't cast shadows on each other because they are perpendicular. Thus their dot product is zero and we can use Ax=0 to to find these vectors. These vectors are simultaneously the definition of the null space and orthogonal to the row vectors. Which is why we can say the null space and row space are orthogonal, and why the dot product is tool to get there.
@yojacq
@yojacq 2 ай бұрын
great vid God bless your work
@SeeTv.
@SeeTv. 2 ай бұрын
15:45 No, the row vectors are not necessarily a BASIS of row(A) (unless r=m), but they are a SPANNING SET of row(A) and this is the only thing we need for the proof.
@yizhu5275
@yizhu5275 3 ай бұрын
very ituitive explanation ever seen so far. Really good materials for newbies in LA. Recommended!
@nathanisbored
@nathanisbored 4 ай бұрын
12:21 left in a outtake
@WrathofMath
@WrathofMath 4 ай бұрын
Thank you, just used KZbin's built in editor to cut it out, hopefully once it finishes processing it will be fairly seamless.
@JoshuaRoose
@JoshuaRoose 2 ай бұрын
this shit makes no sense im gonna fail my LA test tomorrow
@WrathofMath
@WrathofMath 2 ай бұрын
well, good luck! Let me know if you have any questions!
Eigenvectors and Eigenvalues of a Matrix | Linear Algebra
20:25
Wrath of Math
Рет қаралды 6 М.
Polynomial Equations and the Fundamental Theorem of Algebra
19:28
MathTheBeautiful
Рет қаралды 1,6 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
Order, Dimension, Rank, Nullity, Null Space, Column Space of a matrix
14:04
The Core of Linear Algebra
18:56
DiBeos
Рет қаралды 14 М.
Matrix Transpose and the Four Fundamental Subspaces
13:45
Ben Newman
Рет қаралды 36 М.
The deeper meaning of matrix transpose
25:41
Mathemaniac
Рет қаралды 399 М.
The Matrix Transpose: Visual Intuition
26:01
Sam Levey
Рет қаралды 36 М.
The Big Picture of Linear Algebra
15:57
MIT OpenCourseWare
Рет қаралды 994 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 218 М.
The unreasonable effectiveness of linear algebra.
18:04
Michael Penn
Рет қаралды 182 М.
The Fastest Multiplication Algorithm
13:58
Dr. Trefor Bazett
Рет қаралды 124 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН