The Liquid Fluoride Thorium Reactor: What Fusion Wanted To Be

  Рет қаралды 386,930

Google TechTalks

Google TechTalks

15 жыл бұрын

Google Tech Talks
November 18, 2008
ABSTRACT
Electrical power is, and will increasingly become, the desired form of energy for its convenience, safety, flexibility and applicability. Even future transportation embraces electric cars, trains, and chemical fuel production (jet fuel, hydrogen, etc.) based upon an abundant electrical supply. Although existing energy sources can and should be expanded where practical, no one source has shown to be practical to rapidly fulfill the world's energy requirements effectively. Presently there is an existing source of energy ideally suited to electrical energy production that is not being exploited anywhere in the world today, although its existence and practicality has been know since the earliest days of nuclear science. Thorium is the third source of fission energy and the LFTR is the idealized mechanism to turn this resource into electrical energy. Enough safe, clean energy, globally sustainable for 1000's of years at US standards.
This talk is aimed at explaining this thorium energy resource from fundamental physics to today's practical applications. The presentation is sufficient for the non-scientist to grasp the whole subject, but will be intriguing to even classically trained nuclear engineers. By providing the historical context in which the technology was discovered and later developed into a power reactor, the story of thorium's disappearance as an energy source is revealed. But times have changed, and today, thorium energy can be safely exploited in a completely new form of nuclear reactor.
The LFTR is unique, having a hot liquid core thus eliminating fuel fabrication costs and the need for a large reactor. It cannot have a nuclear meltdown and is so safe that typical control rods are not required at all. This design topples all the conventional arguments against conventional energy sources in such areas as:
* Waste Production
* Safety
* Proliferation
* Capital Costs and Location
* Environmental Impact
* Social Acceptance
* Flexibility
* Grid Infrastructure
* Efficiency
Should America take this step toward a New Era in Nuclear Energy Production? Hear the case for "The Electricity Rock" and then decide.
Speaker: Dr. Joe Bonometti
Dr. Bonometti has extensive engineering experience in the government, within industry, and in academia over a 25-year career. Recently completing an assignment as the NASA Chair Professor at the Naval Post graduate School, he supported a ship design study that utilized advanced nuclear power derived from thorium. Working at NASA for ten years as a technology manager, lead systems engineer, nuclear specialist, and propulsion researcher, he lead several NASA tiger teams in evaluating the Nuclear System Initiatives fission demonstration vehicle and missions. He managed the Emerging Propulsion Technology Area for in-space systems, the Marshall Air Launch team, as well as a variety of other power and propulsion assignments and is now the Lead Systems Engineer for the Ares I-Y flight. After earning a Doctorate degree in Mechanical Engineering from University of Alabama in Huntsville, he spent several years as a Research Scientist & Senior Research Engineer at the UAH Propulsion Research Center where he served as a Principal Investigator and manager for the Solar Thermal Laboratory. He has worked as a Senior Mechanical Designer at Pratt & Whitney supporting aircraft engine manufacturing and at the Lawrence Livermore National Laboratory within the laser fusion program. A graduate from the United States Military Academy, at West Point, where he studied nuclear physics and engineering, Dr. Bonometti served as an officer in the United States Army Corps of Engineers; both in combat and district engineering management assignments. He is a Registered Professional Engineer in the State of Virginia, and has authored numerous aerospace technical publications, particularly propulsion and space systems technologies. His technical expertise includes nuclear engineering, specialized mechanical & materials research, space plasmas & propulsion, thermodynamics, heat transfer, and space systems engineering.
This Google Tech Talk was hosted by Boris Debic.

Пікірлер
Energy From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor
1:22:09
Aim High: Using Thorium Energy to Address Environmental Prob
59:50
Google TechTalks
Рет қаралды 69 М.
Super gymnastics 😍🫣
00:15
Lexa_Merin
Рет қаралды 108 МЛН
Tom & Jerry !! 😂😂
00:59
Tibo InShape
Рет қаралды 59 МЛН
FOOLED THE GUARD🤢
00:54
INO
Рет қаралды 63 МЛН
ОДИН ДЕНЬ ИЗ ДЕТСТВА❤️ #shorts
00:59
BATEK_OFFICIAL
Рет қаралды 8 МЛН
Space oddities - with Harry Cliff
54:22
The Royal Institution
Рет қаралды 548 М.
Why Physicists Need the Large Hadron Collider
1:27:55
Google TechTalks
Рет қаралды 49 М.
Breakthrough in  Nuclear Fusion? - Prof. Dennis Whyte
1:38:49
MIT Club of Northern California
Рет қаралды 1,1 МЛН
The latest developments in fusion energy - with the UKAEA
58:43
The Royal Institution
Рет қаралды 145 М.
Colossus - The Greatest Secret in the History of Computing
1:00:26
The Centre for Computing History
Рет қаралды 918 М.
LFTR Chemical Processing & Power Conversion - Kirk Sorensen
59:57
gordonmcdowell
Рет қаралды 121 М.
Neil Turok Public Lecture: The Astonishing Simplicity of Everything
1:39:14
Perimeter Institute for Theoretical Physics
Рет қаралды 4,6 МЛН
Kirk Sorensen @ PROTOSPACE on Liquid Fluoride Thorium Reactors
2:36:45
gordonmcdowell
Рет қаралды 265 М.
💅🏻Айфон vs Андроид🤮
0:20
Бутылочка
Рет қаралды 742 М.
Will the battery emit smoke if it rotates rapidly?
0:11
Meaningful Cartoons 183
Рет қаралды 37 МЛН