The Most Remarkable Theorem: Part II (Surface Curvature)

  Рет қаралды 10,313

FiguR3 iT ouT

FiguR3 iT ouT

Күн бұрын

Пікірлер: 8
@agrajyadav2951
@agrajyadav2951 11 ай бұрын
I have no right to be watching this for free. You are a great teacher, this is excellent!
@theoffroadteam28
@theoffroadteam28 11 ай бұрын
Awesome
@jonathanv.hoffmann3089
@jonathanv.hoffmann3089 11 ай бұрын
🎉 🎉🎉 🎉🎉🎉
@АлексейТучак-м4ч
@АлексейТучак-м4ч 11 ай бұрын
But what are principal directions? If for example we rotate a hyperbolic paraboloid z=x^2-y^2 along OZ will they change? Or are they just sections of a surface by a surfaces of constant u or v?
@ToothbrushMan
@ToothbrushMan Жыл бұрын
I think that your definition of a principle direction isn't quite there? At any point on a surface, you can measure the line curvature of any line going through that point, the line being in the flat plane that is perpendicular to the surface at that point (i.e. its normal vector lies in the tangent plane at that point). You can then rotate that plane about the normal to the surface at the point and observe the line curvature vary as the plane is rotated. In a 360 degree rotation, there will be two angles (180 degrees apart) where the line curvature will be a minimum. And there will be two angles where the line curvature is a maximum. These directions define the principle directions, and the product of the maximum and minimum line curvature is the Gaussian curvature? The principle directions cannot be the tangent vectors in the directions of the axes in whatever coordinate system the surface is being mapped in, as that would mean the Gaussian curvature would be dependent on the coordinate system being used, and wevknow that the Gaussian curvare is a property of the surface only, and not the coordinate system. Please forgive me if i got any of this wrong.
@alex1507er
@alex1507er Жыл бұрын
Very strange gap indeed, in an otherwise reasonable lecture.
@7177YT
@7177YT Жыл бұрын
Cool!
@rogerscottcathey
@rogerscottcathey Жыл бұрын
Oh, a neutrino.
The Most Remarkable Theorem:  Part III ( Theorema Egregium )
15:25
FiguR3 iT ouT
Рет қаралды 7 М.
The Most Remarkable Theorem  Part I (Theorema Egregium)
28:36
FiguR3 iT ouT
Рет қаралды 139 М.
Sigma baby, you've conquered soap! 😲😮‍💨 LeoNata family #shorts
00:37
🕊️Valera🕊️
00:34
DO$HIK
Рет қаралды 16 МЛН
А что бы ты сделал? @LimbLossBoss
00:17
История одного вокалиста
Рет қаралды 11 МЛН
The clever way curvature is described in math
16:17
Mathemaniac
Рет қаралды 95 М.
Visualization of tensors  - part 1
11:41
udiprod
Рет қаралды 605 М.
Gauss Curvature and proof of Gauss Theorema Egregium
20:51
math&physics with intuition
Рет қаралды 90
The Remarkable Way We Eat Pizza - Numberphile
7:42
Numberphile
Рет қаралды 1,4 МЛН
The Mystery of Spinors
1:09:42
Richard Behiel
Рет қаралды 1 МЛН
Video 78 - Gaussian Curvature
22:43
Tensor Calculus
Рет қаралды 2,1 М.
A Visual Intro to Curves and the Frenet Frame
18:12
Daniel Walsh
Рет қаралды 24 М.
Euler's Formula Beyond Complex Numbers
29:57
Morphocular
Рет қаралды 233 М.
Gauss's Divergence Theorem
26:53
Steve Brunton
Рет қаралды 141 М.
Sigma baby, you've conquered soap! 😲😮‍💨 LeoNata family #shorts
00:37