Visit gift.climeworks.com/numberphile and us se code NUMBERPHILE10 for 10% off your purchase (sponsor) More videos with Neil: bit.ly/Sloane_Numberphile Prime Playlist: bit.ly/PrimePlaylist
@numberandfacts61743 жыл бұрын
Riemann hypothesis solutions is complex irrational number. I have one theroy 🙏. Which platform I publish my theroy plz tell me. 🙏
@JMcMillen3 жыл бұрын
What happens if you reverse the order of each numbers digits after passing N? Any primes there?
@amadiohfixed13003 жыл бұрын
I am The Crazy Scientist and I left this message here for no reason whatsoever
@ValkyRiver3 жыл бұрын
Does this work in other bases?
@bunkenator3 жыл бұрын
Honestly, who wouldn't want endless boxes of chocolate?
@diegomo14133 жыл бұрын
He sounds like he gets out of bed in the morning and is absolutely thrilled he gets to do more math, every single morning
@oz_jones3 жыл бұрын
High on math
@Numbabu3 жыл бұрын
This comment is delightful. :)
@douche89803 жыл бұрын
He is a mathematic mathADDICT
@tabletoparcade42033 жыл бұрын
You should see Cliff Stoll talking about Topology.
@TheTechAdmin3 жыл бұрын
4:46
@MonzennCarloMallari3 жыл бұрын
"Give me a prime" "2^31 - 1" Baller move. Brady should do that the next time Matt Parker asks for a number
@PMA655373 жыл бұрын
I had a colleague say Graham probably knew something we wanted so I said he could call Graham's Number but it could take a while to get answered.
@ragnkja3 жыл бұрын
@@PMA65537 Graham’s number is definitely not a prime.
@hetsmiecht10293 жыл бұрын
@@ragnkja you probably missed a joke. With 'call' the commenter meant 'making a phone call'.
@Palparepa3 жыл бұрын
A Parker Mersenne Prime? 2^67-1
@General12th3 жыл бұрын
@@ragnkja 2^G - 1 might be prime though!
@pcfilho4253 жыл бұрын
Neil Sloane is always worth my time.
@MecchaKakkoi3 жыл бұрын
Whether it be odd, even or prime
@PhilBagels3 жыл бұрын
He's worthy of prime time.
@tristanforward90943 жыл бұрын
Neil Sloane is always prime time!
@Triantalex Жыл бұрын
??
@renerpho3 жыл бұрын
Seeing Neil Sloane enjoy his sequences (and talk about them) is always a pleasure. Please do more interviews with him in the future!
@ValkyRiver3 жыл бұрын
Please do it in some other bases, I’d love to see one in base 6
@masterimbecile3 жыл бұрын
He's got major Jeff Goldblum energy.
@Derbauer3 жыл бұрын
We need MOAR....! Please?
@thecakeredux3 жыл бұрын
Yes, please. I'm especially here for sequences and primes.
@Triantalex Жыл бұрын
false.
@LucenProject3 жыл бұрын
4:39 "I'm not finished. I have another segment." I don't know why, but I really enjoyed that. He loves and can talk about numbers all day.
@Alan_Clark3 жыл бұрын
The largest prime that I know the digits of is Belphegor's Prime: 1 0000000000000 666 0000000000000 1 Thirteen zeros before and after the number of the beast, 31 digits (13 reversed) in all.
@CobraQuotes13 жыл бұрын
Checkmate christians
@Chaosdude3413 жыл бұрын
That's so friggin cool
@MikeRosoftJH3 жыл бұрын
Of course, Numberphile has covered this number: the video "The Most Evil Number".
@michaelsmith49043 жыл бұрын
But are there an infinite number of primes of the form one, some number of zeros, 666, more zeros and a one? Or more than one even?
@bowenheinrich3 жыл бұрын
@@michaelsmith4904 the smallest prime after this one with 13 zeros is with 42 zeros (10000000000000000000000000000000000000000006660000000000000000000000000000000000000000001). also no zeros (16661) is also prime
@arturslunga34153 жыл бұрын
Great, now I can boast about knowing a 17000-digit prime by heart! Thanks
@pianopolly3 жыл бұрын
Be careful not to boast too loudly. Someone might ask you to write the number down. It could take a while.
@Anonymous-df8it3 жыл бұрын
Well, write it!
@RWBHere3 жыл бұрын
Read the Description. At the time of the video, it was only a probable prime.
3 жыл бұрын
@@RWBHere I really like how you future-proofed your comment.
@asheep779710 ай бұрын
@i liked how, at the time of reading, he had future proofed his comment.
@Amechaniaa3 жыл бұрын
He better live to a hundred or I'm gonna cry
@blower53 жыл бұрын
100 isn't a very interesting number - I say he should live to the age 1729
@TimMaddux3 жыл бұрын
He should live for a whole number of years, to within a day.
@MrDoctorDen3 жыл бұрын
Better to the age of N
@abdulalem84473 жыл бұрын
but 121 isn't a prime number. Here n=2
@MathNerd17294 ай бұрын
@@Anonymous-df8it I think 1729 was meant to be a reference to a mathematician just like the 1729 in my username. Still agree that base-6 would've been better than base-10
@herbieklein22713 жыл бұрын
He always seems like a child who has found something interesting to play with 😍
@avikbhattacharya68543 жыл бұрын
A Klein, interesting. You're a point of interest for Numberphile
@heh23933 жыл бұрын
Do you manufacture bottles by any chance?
@francescocostanzo82253 жыл бұрын
I feel like a child who found something to play with and want to show other people my new thing!
@AndrewKleinWW3 жыл бұрын
@@avikbhattacharya6854 oh?
@vigilantcosmicpenguin87213 жыл бұрын
Yes, numbers are quite a fun thing to play with.
@noobxgod19683 жыл бұрын
I would love to hear more from this gentleman, he can be a narrator for some great shows
@psmirage85843 жыл бұрын
Yes. He sounds a lot like David Attenborough.
@atomic51343 жыл бұрын
Now, Stanley was- for the first time in his life- curious as to what the next prime could be.
@jmodified3 жыл бұрын
He uses a lot of range.
@Triantalex Жыл бұрын
??
@yashrawat94093 жыл бұрын
Prime numbers and numberphile videos about them , never get old
@ace_falken53623 жыл бұрын
@numberphile hey! I saw this and thought, "what about concatenating increasing values to the left" i.e. 1,21,321,4321,54321, etc. Did a little bit of number crunching and the first one I found was at a starting value of 82. They exist! (I was able to speed up my search realizing that 2/3 of these are divisible by 3 and skipping testing those.) Maybe look for the next one and make a video on it? Prime related videos are always a hit. :) Anyway.... Loved this video! It inspired the little search I just did.
@SJrad3 жыл бұрын
Well if these primes(assuming there will be more) don’t have a name yet, we could call them Falken primes
@kvarts3143 жыл бұрын
How far did you go? Judging by how fast the number grows there should be infinitely many (O(ln(ln(n))) below some starting value of n)
@vigilantcosmicpenguin87213 жыл бұрын
Ah, that's a nice prime.
@FedoraMark3 жыл бұрын
Would that be the “least wanted prime”?
@ace_falken53623 жыл бұрын
Wouldn't mind them being called Falken primes if there's no name yet. I'm looking into other patterns that I'd be more keen to get something published for. I didn't look past 82. Reason being I typed the number manually into an online primality test. I was more than happy finding 1. (I was willing to go up to 100) I really need to code up something to do these things for me :)
@Diapolo103 жыл бұрын
I got curious and decided to try this - but with base-2 instead of base-10. And I think I found one! 01101110010111011110001001101010111100110111101111, which is 485398038695407, _is a prime_. And it contains the numbers from 0 (which might as well not be there) to 15.
@hareecionelson58753 жыл бұрын
I give you a virtual cookie
@johnboyer1443 жыл бұрын
This comment needs more visibility!
@CompilerHack3 жыл бұрын
Few others: 1 2 3 4 5 10 11 12 13 14 15(b6) is 4060073996291 1 2 3 4 5 6 10 11 12 13(b7) is 131870666077 12(b3) is 5, 12(b5) is 7, 12(b9) is 11, 12(b11) is 13, 123(b8) is 83 12345(b12) is 24677 (couldn't find anything in base 4) Binary goes till 15 a multiple of five, 3 and 12 both go till 5. 12 and 5 together remind me alot of the golden ratio
@ambidexter20173 жыл бұрын
This can actually be a big insight. Can't believe nobody bothered to look at other number systems so far!
@DavidSartor03 жыл бұрын
@@CompilerHack Why does twelve remind you of the Golden Ratio? It is not a Fibonacci Number.
@zatty2323 жыл бұрын
The professor has such a beautiful voice.
@alexandernyberg86683 жыл бұрын
I would like to note that if the step between each number is 2 instead of 1 (so 135... instead of 123...) the first prime is 13, but the first interesting one is 135791113151719
@hareecionelson58753 жыл бұрын
Now that's fun
@divyeshkatariya49513 жыл бұрын
Wow
@iridium1413 жыл бұрын
Someone should run this for other steps of n
@chrisg30303 жыл бұрын
So are 1357911131517191715131197531 and 19171513119753135791113151719
@alexandernyberg86683 жыл бұрын
@@chrisg3030 Okay that's really cool
@onion0133 жыл бұрын
"It's a story you can tell at parties." I'd love to go to a party where I get to hear Neil Sloane's stories!
@Triantalex Жыл бұрын
??
@YouennF3 жыл бұрын
I'm intrigued by the sequences both so important and so hard to evaluate that they have the privilege to be included in the OEIS with only one entry. Tell us more about that please !
@SSM24_3 жыл бұрын
Someone else in the comments went and found all the one-term sequences on OEIS: A058445, A058446, A072288, A076337, A115453, A118329, A122036, A144134, A245206
@leif10753 жыл бұрын
How could something have more than one entry in the OEIS? What would that mean?
@cgibbard3 жыл бұрын
@@leif1075 They mean only one term in the sequence is known, and yet the sequence is included.
@kjl30803 жыл бұрын
@@SSM24_ someone should make a submission made of the ids of the currently all OEIS sequences with one term
@MarioWenzel2 жыл бұрын
@@SSM24_ at least for A118329 the second term is known but too large to be included.
@rajrigby83852 жыл бұрын
Me: "Is this prime?" Mathematicians: "hmm, not sure... BRING OUT THE GIMP!!!!!"
@crazilycrazy29 Жыл бұрын
My new favorite hobby is reading all the comments on "the all 1's sequence" on the oeis.
@killermelga3 жыл бұрын
Now I'd really like to know which sequences in the OEIS contain a single term
@thisrandomdude_3 жыл бұрын
absolutely!
@TheRealQwade3 жыл бұрын
Came here to say this. You can't offhandedly mention extremely important single digit sequences and not give an example!
@el_chivo993 жыл бұрын
same!
@ragnkja3 жыл бұрын
A single term, not necessarily a single digit.
@killermelga3 жыл бұрын
@@ragnkja _aCtUaLlY_ but yeah, you're right lol just edited the comment
@B1GB1RDB4G3L3 жыл бұрын
So happy to have Neil back
@caiohomar15403 жыл бұрын
Huh, this is interesting... I actually got 2 "most wanted primes" in hexadecimal with n < 1000, the first is 123456789ABCD (n = 13) and the other is much larger (n = 211)
@jmodified3 жыл бұрын
Which brings up an obvious question. What if you do it in base n+1?
@coopergates96803 жыл бұрын
@@jmodified Or base n - 1, so the last amount is base + 1 so that's relatively prime to the base, too.
@caiohomar15403 жыл бұрын
@@jmodified No idea... I tested up to b=256 today and n
@iridium1413 жыл бұрын
@@caiohomar1540 Does any base have a dedicated OEIS sequence?
@caiohomar15403 жыл бұрын
@@iridium141 Don't think so, I couldn't find it at least...
@gdclemo3 жыл бұрын
I expect the most wanted prime number is the private key to some big bank's signing certificate, but this is maybe the coolest (to mathematicians)
@ambidexter20173 жыл бұрын
It's gotta be one huge as key I tell you what
@leobrouk3 жыл бұрын
Private keys are composite.
@genewitch3 жыл бұрын
banks do journaling once a day, so at best it'd be a big news item, but if the books don't square the transactions will not go through.
@timsloane3 жыл бұрын
I love these videos with Neil Sloane. It's very soothing to hear him describe patterns.
@Wookiesmasher3 жыл бұрын
Neil is an absolute treasure, and it’s always pure joy to watch numberphiles when he is in an episode!
@NaNAmbient3 жыл бұрын
I hope I'll have his energy at his age. Just a joy to watch.
@ivanvishniakou33853 жыл бұрын
And his voice! He is an awesome narrator, so engaged and excited.
@centralbiz59743 жыл бұрын
by the books in his shelf it´s nice to see Professor has also an interesting in Operating Systems (Unix) and computer programming (Shell)
@thenomanvids3 жыл бұрын
His areas of interest are combinatorics and error-correction which explains his bookshelf.
@PampersRockaer3 жыл бұрын
I am still contemplating whether this is is an ingenious and pragmatic idea of just writing the contents of the stacked books on the side of the pages or the laziness of not getting a proper bookshelf and organizing the books where you can read the actual titles.
@johnopalko52233 жыл бұрын
Not to mention R.
@krissam7791 Жыл бұрын
You know Borel was a mathmatician and not a computer scientist because he couldn't quickly calculate 2^31-1 in his head :p
@henkolsonpietersen2242Ай бұрын
😂😂
@B1GB1RDB4G3L3 жыл бұрын
can't wait to whip out this story at a party
@Volvoman903 жыл бұрын
I love the fact Neil has a ping pong table as a desk.
@jfpeltier3 жыл бұрын
In base 3, not in OEIS, for most wanted primes (or pseudoprimes), you have: n=2 12 5d n=5 12101112 3929d n=82 121011122021221001011021101111121201211222002012022102112122202212221000100110021010101110121020102110221100110111021110111111121120112111221200120112021210121112121220122112222000200120022010201120122020202120222100210121022110211121122120212121222200220122022210221122122220222122221000010001 112472248900628264609109603739848048285897664360560828256938844196881901607705808202739737387845865591848483833175481611716989149644798597217d n=2546 12...a 17096 digits base3 number and in decimals: 438901614887514605466267024386135650600033362816444496806711372482245146884915386909751348997365801080402351449028502471242758888291675821118882089624318810691875547196735723240044009073427703696943580508956388470243977950109715055427911971938769774537861003809418719662224703232659963740936759146413626780864259526623534809268264284464067573779632781576662014162616826112288023392384774287767276320175409899881761958681471740412391874176042195430070221392433210585775906449594019840671917690306383887269066440280869038221590800757726038419310165765817602141383203628163030486797195470487225017025556330003905306893745165136800294081763649102929942289549029289694486589044625755773540712708002139120512015235073943656831115285653411989128764226947221449296389459674032450987082484043225302027278826769410720791535692229493371031924259660556848144314000445654512658136867612154055336435117898846176463282467432817204323281940956831945877855475081487734707725937382588017637605467946620737185161919285910727346515604035560027325241617303161426862687582608779165975115120037965282740364477929244994948643424406776025837599317893217934242983173962854495549552925865358362160216170232431412501191185122859465062497612933449290017800399832615920842635549143644417498407282164430111190673427067279254777126182311689788339580626526879218126104793463452645047651100305200749754425281186984457004839397827526097260844873083759672695142118136400187418757225802418639267030503007125458153523931207934882184132836181235705883074168544338649964944315222818030304854865580595027150897598524505443395177578042859671886994011148667288767765497566847363098520947250508659308001673701049339493880352430223893633783346800139234340664168619262580858161177425052811238334058093109643234935631893615271178784996590633473073045834020706511677721803088305408381234753514475074849924505207886445911252646076120937379014709441628137808976455481463512462096244860345574315484717207832106753890953713937904982858926361286681194513782402190772071347397526087851818679282636863859352153479144525826571420850114077385592124609592686912007702391578702044511649340622136791579272315034250821418780278111935666966091650914548744757218825982833851583002407620557942660474959299938188913070125916269693012051653447069343388401733199482657537411375249202481112064910061966524173074310317506995281791854589825621338034046854382960671569788537973365456474490252399919779987126977112652497293767434735550597779641352914431817257830567295527502994243084492733418360365813514813082113397034621711820937265302372631858924981012233776155001023122872486769362546086022299511589199892237656094464364795419166791495343658971827297078230172672836473972499001793841210218983321833999585865141748945016812805554163352422570692230543971779497512947313915747863897248386240199933836536897429460817607741096407421334176965826575305909098151797856352021065933462319015038571632310281363782242405456561072660828085094572441184322043645967483835458792958061179945950237724064153512479640307650520223071942459696844558775725210873435662497329528062699343340547057845708465401419776666473542234739723112889506098158607358386544763603846912596365421297389929873804176039812718462615217865889168346463573509340991263267280750673373227985960761895444868329529202641984260680399880681697432376882093710003142346365239061028260990115196961790036303028664916802952870971285513130323212935759290243064700926865580807469522757708352423605709300452286552045763227345233428490525305459744051993431832215900878592453007640782228628152888142077344423394604330124218565464396362665619752655039630661092370763799913933061323982754470390704248673099689879044276844231827028973814330989322247881462852458897210262545089984831435951988634241204306544509757730686037451417570579775944158145869252098883388942146173429252051567573522530401013328583210415168947591395744568986130643890797364875606647394354008687467026202990068615725771510886684287497054500143293853741651016641308994226911706619201023960034111577893632812444224116002475647496979880940952622185932420442791808235729577171091700569556999147247238281651414307698923457125018811089030223204213471009151245308726594039942960381506400657188276351996631909496469878494341455015096590860152630086653717147052776243974920863565048770745598343350054367339632222613376129845660848073595236733729148394330150182049430153303525996965101223460297494682810714347238975208847007091915138622524610069828844642103031475682537518816620566074664714010706389507184773671166591423641463947926995682244260517480096043234676623274797478805714178010262597943473907308497240192380947608952606270183913576744271001425297221800285990491194478490872941695038781616831946021363754717166665253777716708699184844182295821946390662947508525762189741247458205462637573773038284499995562162498922657257206676548110378420888182630953507930913936162407326012853951844070139467437286092579039772558117128286112038515914839702812823662723874760982499647832179622468735509287014228638815604389024221105353488557697150202057253599945724951028100136398437626228243145428785211412623961388893948697191179006369598767232091215109668854155733795448325845458855959085896101726236478860711044573327536899308364702654108310850277643652514439466404599781514526217602434435680426173237299033136558608105430552125179732593145895855597822806797138423311127513999228141629403521076652240902990808957938670382742930185334263135596714938518686636870359196417050573013555235794819551427444692941136083169437591866053007429101593174752126422267978113947477461632199149574653056995580876468468841512503929265973642142521433783910029701927589568500637598930280799274868655321543428664359831794693822872073190107789469188420594776959536133518213026753649027479520105658505413112757606653778202698386410866669261793298774706466885673703937418813676083119806154269281559939970261119267626636028263921354951358586526357005123308387086908417130065448016969108814742360412546524023100394681035588457758593149829172706208635924807614988395060367385862447528343392322877668590782646462344060192295581656854743315229508080164680704886014611609639080074611150823795908462622284834799780945214780191321575682473098064219102968720714852110768382124024146577003342386825675534120496009149228085797296664947944284459504397362452714225723572952593450824965261345076198411518594355426018167169450570770204353854645929652792627529836025959158795973160711218806372062533011369683801669606973011385261374554712435374666368510832811165374881024432000630156605745731583527568393362099773864654120614392695816927962941961796870705942732062535883974671407701948049998941787677650275837941332147758540549249531205174662609789801130837306242411970101356781854729807193025032643207669020507166841929182848376450424724622565875933484459506081841788009168152121665356137035803619457997587710285070757557475765648197708197336087442233922801051363259058752900768683917817182530781428990233345335491142657554109362089599381648594598632774233042003995246686666171131041962498052053228777886538814004715290787801519670265151626279751436930607755928758779163379959620642739702102423695906633503666884625284074280469791454947762620400566495649335900149037140329044014471637556290564558780455387345220647032374269572508607146969505876102860307439372051463537783921506332039856547516566554110952445716883101947268480724546997982934076279121300134492266584776249333628351423955196946299312750470582678826773819518561854467008142897111691746984665531975523818102531728930681386711149231763248034500067381101184802415913930239273387662235502940626366340343163935252168633269489942804045742529029442688139410283913282798340772808136427200494607809568040254992549523782574468108842177788575245592080095055866273313609298194731956478946627062925151259845335958921788510456102392365071680602249026359659326337432520150462066773815872963830090143826783584318752589919934485486220644252851108622731473363199478507094210005490820523950776749019625467113947559352128569732955675193115243144136506697105041288337632419988844340393521444498029143167750726032348124797660335107
@locomotivetrainstation60532 жыл бұрын
Woah.
@ZainAK2833 жыл бұрын
@3:40 I'd love to watch a video of these 1-term sequences!
@julianatlas51723 жыл бұрын
is a 1 term sequence a sequence? or is it just a scalar
@jamesflames69873 жыл бұрын
@@julianatlas5172 No one knows the second term.
@Coldo38953 жыл бұрын
This is why I love numberphile !
@ffggddss3 жыл бұрын
So why did Armand Borel want a prime of 20 or more digits? What was he planning to do with the answer? We never found this out. (BTW, is Armand related to Emile Borel of the Heine-Borel Theorem?) Fred
@YogSoth2 жыл бұрын
“Bring out the Gimp” “But the Gimp’s sleeping” “Well, you’ll just have go wake him up now won’t you?”
@elidrissii Жыл бұрын
I love Sloane's enthusiasm, it's infectious.
@oz_jones Жыл бұрын
So is Cliff Stroll's
@Ryan_gogaku3 жыл бұрын
Very base-10 heavy. The number 12345678910987654321 is indeed very memorable, and a nice piece of trivia at a party, but it seems like nothing particularly special because the fact that we write in base 10 is so arbitrary. I'd be curious to know if we wrote in base-12, for example, or base-n, whether either palindromic sequences or sequences that stop at n would be prime.
@MCLooyverse3 жыл бұрын
I feel the same way about 3301 and 1033 both being prime. Neat fact, but not very meaningful. People easily conflate the properties of the *representation* of a number, with the number itself (I think partially because people aren't taught much about other notations in school, especially other bases.).
@Integral7777711 ай бұрын
This is related to recreational mathematics. You don't seek for beneficial in math at all, problem is problem. The number is in base 10 but It is not true that these problems are not important mathematically.There are serious problems in recreational math and the way to solve them sometimes lead to important areas.
@andymion3 жыл бұрын
Brady: Should we believe there are an infinite numbers of n's this will work for? Neil: Yes, do the math. Me: I don't think I will.
@GodwynDi3 жыл бұрын
I don't think I can
@RWBHere3 жыл бұрын
@@GodwynDi Nobody can, yet.
@jmodified3 жыл бұрын
@@GodwynDi If you have any sort of stem degree, then you probably know (or knew at one time) enough math to do it. I assume you would: look up "distribution of primes", find an approximate distribution of these numbers with a simple form - which looks easy, then determine if the sum of expected number of these primes computed from those results diverges - which could be difficult but is probably very easy. That is assuming of course that there is nothing "special" about these numbers in relation to primes, which seems very unlikely given the form of the numbers.
@GodwynDi3 жыл бұрын
@@jmodified I probably could have when I graduated college, but that was near 20 years ago. And I don't use any complex math anymore. Still enjoy following the stuff though.
@keithmills7782 жыл бұрын
Well, the number of primes like this will be an extremely small subset of all integers. But, since there are an infinite number of integers, any subset with members that occur periodically would, by definition, also be infinite.
@mashtonish3 жыл бұрын
he sounds like he's very well practiced at saying "sorry"
@MmKayUltra13 жыл бұрын
For the most wanted prime it's interesting that not only are n%2=0 definitely not prime. but because 10%3=1, also n%3=0 will definitely be divisible by 3 as the last one was and n-2+n-1 is divisible by3. But this carries over to n%3=2 as we know that the next number is divisible by 3 and that a multiple of 3 was added.
@MmKayUltra13 жыл бұрын
The same is true for n%11=0 and n%11=11-1. And the pattern holds for 111, 1111,... Found out this wasn't true but the 3 one still is
@kamuginkhan3 жыл бұрын
I can't bear the sound of that sharpie pen writing on that rough paper!
@jschoete34303 жыл бұрын
A petition to authorise 1 to be a prime number would solve this problem easily!
@42ArthurDent423 жыл бұрын
and break mathematics ;)
@672thesketchgirl Жыл бұрын
And then mathematicians would look for the 2nd smallest such number and we're stuck again.
@chevaliermalfet3 жыл бұрын
If you sieve out everything divisible by 2, 3, and 5 in the search for the 1...n prime then you only need check {2k+1} intersect {3k+1} intersect {5k}' which is the numbers that end in {1, 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 121, 127, ...} which is a set not on the OEIS.
@darreljones86453 жыл бұрын
Neil: I encourage everyone to continue the search and find that smallest value of n which is prime. Me: Or prove such an n doesn't exist?
@jamesknapp643 жыл бұрын
Its possible there an infinate many, just very rare. First counter example could be say n = Gogulplex (well heristically) and occur with probability 1/log_gogulplex n We'd never find one of that were the case
@Anonymous-df8it3 жыл бұрын
Or prove that this puzzle is unsolvable (i.e. you can't prove it doesn't exist yet you can't find a smallest value that's prime)!
@danielyuan98623 жыл бұрын
@@Anonymous-df8it You can't prove that this puzzle is unsolvable, because if there is such a prime, then once you know the example, it's trivial to prove that the puzzle is solvable, therefore, your "proof" that the puzzle is unsolvable proved that there is no such prime, which solves the puzzle and contradicts itself.
@MrTomyCJ2 жыл бұрын
I guess Neil already knows that they exist, otherwise they would've mentioned that it hasn't been proved.
@augusto2563 жыл бұрын
This is gold. A true KZbin treasure.
@nekad20003 жыл бұрын
I'm always suspicious of messing around with functions that only work in base 10. It's not that this isn't a real problem that could be solved, it's just more than it feels like numerology instead of mathematics.
@JMacSD2 жыл бұрын
Yeah finding primes with a pattern so it's easy to remember how to write them out in base 10, not a real math problem. I guess numerology is playing with numbers like this? This play does lean on serious math problems, like for each check to decide if a candidate number is a prime, it's helpful to use a fast method for finding a number's factors (this implementation quits when it finds any, or declares prime when the search ends in failure).
@scottdebrestian9875 Жыл бұрын
Conway's 'Look and Say sequence" is even more arbitrary, and yet it proved to lead to some interesting mathematical developments.
@ianmoore55023 жыл бұрын
God I hope you have 100 Neil Sloane videos backlogged. This man is my math grandfather. What a treasure.
@matthewwhiteside46193 жыл бұрын
I liked Neil's little moment of flailing, frustrated at being unable to find any primes.
@RibusPQR3 жыл бұрын
Get me pictures of spiderman!
@cloudstrifex883 жыл бұрын
I love your videos with Neil. Hands down my favorite guest on the channel!
@litigioussociety42493 жыл бұрын
I really hope this video helps find the first prime like that.
@numberphile3 жыл бұрын
me too!
@andrewkovnat3 жыл бұрын
me three!
@davidwillmore3 жыл бұрын
Me 2^2
@locomotivetrainstation60532 жыл бұрын
Me 2^2 + 1 (the 2nd weirdest prime number)
@Rawrzers1003 жыл бұрын
Spent some time working out a formula for the amount of digits of the number resulting from writing 1 up to n and back down to 1 written in base b. d(2*n+1)-(2/(b-1))(b^d-1) where d = floor(log_b(n))+1 or in other words the amount of digits of n when written in base b
@joedeshon3 жыл бұрын
2:40 Ten works! And 2,446! And beyond that we don't know... But we DO know there are an infinite number of them! And THAT's why I love Numberphile so much!
@ivankucha38903 жыл бұрын
Well, to be fair, we don't KNOW that there are any more, we're just assuming that because it's a completely artificially constructed number so it's equivalent to picking at random (taking into account things like the numbers not being even etc) and we can calculate the probability of a number in a certain range being prime so we can calculate the average amount of primes in the first n numbers of the sequence and it diverges therefore one could say it's probably infinite
@Mathemarius3 жыл бұрын
Why does this wrong comment get so many upvotes? We don't know, man!
@gregoryfenn14623 жыл бұрын
@@Rank-Amateur no it doesn’t. For N= 1 you get the number 1, which is not a prime.
@SlenderSmurf3 жыл бұрын
@@gregoryfenn1462 1 is divisible only by itself and 1, checkmate
@bitterlemonboy3 жыл бұрын
@@SlenderSmurf OK, but 1 is still not a prime number
@TXKurt5 ай бұрын
If you want to go up and down (first segment of video), take a look in base 14. Then you have (base 14): 17, 26, da, 182, 1c9, 2a4 that result in primes. In decimal, that's 21, 34, 192, 310, 373, 536.
@kenadams68543 жыл бұрын
Great video.. more of Neil please.
@jjkholdi3 ай бұрын
Curiosity and hard work and persistance are the key in any success in any field. Neil Slone has these factors and more. His achievments in many fields are truley remarkable. He is an Artist in my opinion. Thank you.
@Nickoasdf3 жыл бұрын
My favorite thing about all of the numbers where n is less than 10, they are all square numbers. The coolest part is that the square roots of all of them are all composed of numbers made of 1s
@chrisg30303 жыл бұрын
I assume you're talking about what Neil calls "memorable primes", such as 12345678910987654321 in the first part of the vid. If we replace that '10' in the middle with 'A', a single digit equal to it by convention in number bases bigger than the usual decimal, then we do also get a square. In base eleven for example 123456789A987654321 is a square, as it is in base twelve and thirteen and so on. Even though the actual quantities that particular sequence of symbols represents differ from base to base, they're always squares as as long as we represent n with a single digit. The same applies in bases smaller than ten. On the other hand, when we represent n as 10, then we don't always get even a memorable prime, let alone a square. In base eleven, again for example, where the number after the top single digit A is 10, the number 123456789A10A987654321 isn't a prime, besides not being a square. But in the hexadecimal base, in which the top single digit is F, 123456789ABCDEF10FEDCBA987654321 is a memorable prime.
@Nickoasdf3 жыл бұрын
@@chrisg3030 that's cool and flys over my head a bit, but I'm just taking base ten.
@Chaosdude3413 жыл бұрын
Thank you to Numberphile for showing me the beauty of mathematics. I was in high school learning algebra when I was also watching Parker et Al and understanding little, but appreciating the beauty seen by the presenters. Thanks Brady.
@hareecionelson58753 жыл бұрын
As comedian Chris Ramsay said: "I don't understand what's going on, but I'm enjoying it"
@Joeobrown13 жыл бұрын
Nearly 4m subscribers, nice work. Hope you've got the special ready
@antoniokambire22713 жыл бұрын
Imagine being the 4 millionth subscriber lol
@AaronWGaming2 жыл бұрын
To speed things up you can assume the number Must not be Even Or end in 5, It must also not end in any N=3(x) as (N-2)+(N-1)+N Where N is a Multiple of 3 Is Also A Multiple of 3 (as 3n-3 is a multiple of 3 For all whole solutions). This Eliminates quite a lot of numbers
@sethv52733 жыл бұрын
Time for a part 2 where Matt Parker writes some python code and almost finds one which we can call a Parker prime
@cezarcatalin14062 жыл бұрын
😂 Remember rectangles are “Parker squares”.
@MathNerd1729 Жыл бұрын
I think I found a “Parker Prime” for you! If you write the numbers from 1 to 121 side by side and treat it as a long decimal number [which would likely too big to visualize in the observable universe] then that number's smallest prime factor is 278,240,783 [more than 80% of the American population]. Enjoy! :)
@ddstar3 жыл бұрын
"So. You're sitting there all by yourself"... *This man knows me*
@RFC-35143 жыл бұрын
I always find this type of sequence (that relies on a specific numeric base) kind of "meh". _Relevant_ stuff in maths is about _values_ and their properties, not about the characters you use to write them with. If the "property" you're looking for only works in base 10 but disappears in base 11 or base 8 or whatever, it's just a curiosity. It might tell you something interesting about that base (and that is especially true for base 2, which overlaps with logic / boolean algebra), but not really about the number sequence itself.
@MichaelRothwell13 жыл бұрын
I definitely agree. But having said that, it's pretty cool to know by heart the decimal digits of a prime number that is thousands of digits long...
@msclrhd3 жыл бұрын
For 1...n, only n = 3m+1 (m >= 0) are possible primes. Consider n mod 3, that results in the sequence [1, 2, 0, 1, 2, 0, 1, ...]. Here, 1+2 mod 3 = 0, so the sequence of sums 1 to n is [1, 0, 0, 1, 0, 0, 1, ...].
@WorBlux3 жыл бұрын
What does the most want problem look like in other bases? Partial answer for base 2 n=15 (1111) Is prime (1101110010111011110001001101010111100110111101111) (485398038695407)
@RGVZGM3 жыл бұрын
Cool that he gets to work in a Whataburger themed office.
@greennin3 жыл бұрын
An interesting question would be the following: when we are testing for primes, just “counting upwards”, since they have now made it to 1000000, and he said it seems statistically likely that a prime should have shown up and it hasn’t, I would think it would be an interesting idea to try and figure out WHY you can’t hit a prime counting upwards in this fashion and maybe prove it true or false. What do you guys think?
@danishcolacoca123 жыл бұрын
My thought exactly are we sure that there actually exist a n such that the number becomes prime.
@LunizIsGlacey3 жыл бұрын
You can find primes like this in other bases though, so the chance that one doesn't exist in base 10 would be startling! If it is the case that none exists, and it can be proved that none exists, it would be interesting to know in which bases these sort of primes can or cannot be found.
@coopergates96803 жыл бұрын
@@LunizIsGlacey Someone gave it a shot in various bases and bases 4, 13, 18, and 19 also don't have small primes of this form.
@iridium1413 жыл бұрын
@@coopergates9680 May I ask where you got this info?
@coopergates96803 жыл бұрын
@@iridium141 Did it work when I tried to tag you in the thread where someone offered that info?
@RFC-35143 жыл бұрын
3:02 - Seems guaranteed to get you invited back.
@ВячеславШипин-э8э3 жыл бұрын
Yeaah, Neil Sloane the Legend
@Anonymous-df8it3 жыл бұрын
As I don't like base-specific puzzles, I wonder. If we do the 'memorable prime' thing up to n *but* in base-n, for which values of n will hold now? Also, if we do the 'most wanted prime' thing, again, up to n, in base n, which values of n would hold now? For what values of n would hold for both the modified memorable primes *and* the modified most wanted prime?
@mannshah3 жыл бұрын
I wonder if it is the "prime" accused in a crime?
@logicbreaker3 жыл бұрын
Hello
@paveltikhonov87802 жыл бұрын
How did Borel almost immediately tell, that 12345678910987654321 is a prime?
@kethernet3 жыл бұрын
I'm curious about other bases. Is it just a coincidence that the first one works for n=10 in base 10?
@nverwer3 жыл бұрын
It works for base 2.
@renerpho3 жыл бұрын
@@nverwer 1101(2)=13(10) is prime, yes. It also works in base 3: 121021(3)=439(10) is prime; and in base 4 as well: 12310321(4)=27961(10) is prime, too. 5 is the first one where it's not prime, because 1234104321(5)=3034961(10) is divisible by 137.
@renerpho3 жыл бұрын
This is actually in the OEIS, as sequences A260852 and A260343. So, the bases where this works are: 2, 3, 4, 6, 9, 10, 16, 40, 104, and possibly 8840 (but the last of these is only a probable prime, with 69770 decimal digits).
@viliml27633 жыл бұрын
@@renerpho Huh, no one checked it yet? 70k digits should be barely solvable by supercomputers I think
@renerpho3 жыл бұрын
@@viliml2763 There are a lot of 70k digit numbers. It seems like indeed no one got around to check this one yet.
@XB100012 жыл бұрын
Your enthusiasm is SO contagious. 😁
@Mike_Costello3 жыл бұрын
N has a lot to answer for in mathematics. There is a huge weight on it's shoulders.
@davep82212 жыл бұрын
When my daughter was learning about prime numbers, we came up with a silly joke/riddle: "What is the oddest prime number?"
@philipframpton94282 жыл бұрын
2
@davep82212 жыл бұрын
@@philipframpton9428 ;-)
@locomotivetrainstation60532 жыл бұрын
@@philipframpton9428 maybe it's 5
@glaxmattbas3 жыл бұрын
I wonder if the 1 .. 10 .. 1 prime works for every base you write the number in (like stopping when you reach the base). It seems to work for base 2 and 3
@sock78963 жыл бұрын
It worked for 4 but failed on 5, from my test. I might have messed up and it was a quick n dirty test and some of my tools might be bad, but thats what I got at least
@glaxmattbas3 жыл бұрын
I tried 16 too and it works
@Anonymous-df8it3 жыл бұрын
@@sock7896 Is 5 the *only* counterexample?
@somebody29882 жыл бұрын
I always want more Sloane content!
@pierreabbat61573 жыл бұрын
GIMP is a graphics program. GIMPS is looking for primes.
@jasonremy16273 жыл бұрын
I was just binging all of the old Neil Sloane videos yesterday. So glad to see a new one!
@erickehr44753 жыл бұрын
Counting down instead of up (eg 1110987654321) might lead to more primes as every term will end with 1
@yclinpa3 жыл бұрын
I tested on Sage and it says that 828180...10987654321 is a 155-digit prime
@bigfatpandalaktana27473 жыл бұрын
The way he enounciates question is oddly soothing
@Kranzio-3 жыл бұрын
Maybe it’s just his genuine enthusiasm for the subject he’s discussing, but Neil reminds me a lot of Richard Feynman in his mannerisms and speech.
@chaoslab3 жыл бұрын
This is an absolute gem. Thank you.
@leisulin3 жыл бұрын
How on earth do they manage to prove that the 17,350-digit number is prime?
@cezarcatalin14062 жыл бұрын
Lots of computers screaming in pain.
@locomotivetrainstation60532 жыл бұрын
They tested for a number with 646 million digits (2^2147483647 - 1) it turned out to be composite
@kurzackd5 ай бұрын
4:49 -- nice magazines you have on the wall there, old man !! :D .
@nathanmays79263 жыл бұрын
Based on my careful observations of this channel, I’ve come to realize every competent mathematician on earth has butcher paper and a sharpie.
@nacl79913 жыл бұрын
They bring it with them but yea u are not a math guy if u dont have papers and a sharpie flying around on your desk
@gregg43 жыл бұрын
At 1:12 I started thinking that this was fairly arbitrary as it used base 10. I decided for the heck of it to look at what would happen in base 2 So if we construct a number as demonstrated 1 2 1 but in binary, we get: 1101 -> 13 (in base 10) is prime 11011101 -> 221 (base 10) = 13 * 17 1101110011101 -> 7069 (base 10) is prime 1101110010110011101 -> 451,997 ( base 10) = 7 * 13 * 4967
@anandsuralkar2947 Жыл бұрын
Yeah I thought the same. Base 10 is just too arbitrary .
@matthewparker92763 жыл бұрын
Just an FYI, CCS is pretty much just a waste of money, and has never been demonstrated to be effective at reducing CO2 emissions.
@greennin2 жыл бұрын
at 3:15 I was just looking at the large number and i noticed one of the lines (starting with 646645) ends with ... 276 266 256 (next line): ... 246 236 226 216 ... and more increments of 10. Isn't it cool that with three digits going one step downwards on each number if you look at it moved by one it goes down by 10? just a random musing, don't mind me haha
@flikkie723 жыл бұрын
For the 2nd part, I was wondering if this was true in other bases. I tried doing it for binary and came across a prime quite quickly, at 15 (1101110010111011110001001101010111100110111101111 = 485,098,038,695,407). I'm not sure if this means anything regarding the base 10 solution, but it does show that our arbitrary base number decision is making this more complicated than necessary!
@flikkie723 жыл бұрын
In base 3, the first prime is actually 12 (=5)!
@VibratorDefibrilator3 жыл бұрын
Well, we can conjrcture that such prime numbers exist regardless of the base, but how we can prove this?
@locomotivetrainstation60532 жыл бұрын
So there could be one of the form 1234567891011...9999979999989999991000000 etc
@KINGLADUDU3 жыл бұрын
Yes the legend is back
@Khantia3 жыл бұрын
This climeworks actually sounds like setting up a timebomb for future generations.
@nachoqt3 жыл бұрын
Let's store it all underground, "fill" the "land" if you will. Nothing could possibly go wrong.
@maxine_q3 жыл бұрын
It honestly sounds like a big scam. I haven't looked into it, but: How much CO2 is released from building these machines to extract it? (How long do they need to run to offset that? Factor in maintenance as well) How much CO2 is released from running these machines? Even if they run on renewables, that amount of energy could be used somewhere else to replace fossil fuels. Unless we have 100% electricity production from renewables, this doesn't make any sense in my opinion. Storing it underground doesn't sound like a bad idea. I don't know what form they're storing it in, but it's probably basically just carbon.
@chattyw873 жыл бұрын
If you changed to the base you may find primes when you string the digits together. For example if you used based 3. 12 (base3)= 3+2 = 5 which is prime. If you used base 5) 12(base5) = 5+2=7 is prime. Even base 1 you get 111 (1 and & 2 string together) = 3 which is prime. In general if you take any base N where N+2 is prime the first 2 numbers string together will be prime.
@rbwannasee3 жыл бұрын
Primes are prime regardless of the number base system used. Mixing bases and using numerals that don't exist in the other base is cheating.
@wangjiefan89393 жыл бұрын
3:32 Any examples of those one-term sequences?
@jamesknapp643 жыл бұрын
I know Wieferich Primes has only 2 entries namely 1093 and 3511. Its apparently sequence A001220. Dont know any with only 1 currently. Fermat Primes has only 5 entires and most likely that's it.
@ekszentrik2 жыл бұрын
I like how he says "that most definitely is not a prime", almost borderline indignant.
@likebot.3 жыл бұрын
I suggest another challenge: Try looking for this last kind of prime where the base=n.
@jmodified3 жыл бұрын
Ah, I just suggested that above, using n + 1 though - otherwise you've gone one past the clean part.
@dmsanct3 жыл бұрын
after this i feel an immense need to go find that prime
@danparish13443 жыл бұрын
How long does it take to verify a number is/isn’t prime? You would need extremely efficient programming and a super computer running non-stop for days I would think.
@mikopiko3 жыл бұрын
I would say that the times it takes to verify if a number is a prime or not depends on the number but for each iteration the next one takes even longer.
@thatguyalex28353 жыл бұрын
My calculator has a program that I installed that can factor numbers up to 2.52 million up to 2 minutes, 30 seconds. :) I modified the program slightly to display the estimated calculation time (based upon a computation time regression formula that I got from factoring numbers of various sizes on the unmodified program and timing them), and if the number is prime, it would display "PRIME number".
@ragnkja3 жыл бұрын
It depends on how large the number is. For the most basic method (basically applying the Sieve of Erasthothenes to the number) it scales by the square root of the number you’re checking.
@lumer2b3 жыл бұрын
There are ways to tell if a number is prime without finding its divisors
@gdclemo3 жыл бұрын
There are tests which tell you if a number is probably prime, and the more tests you do the more likely it is. Look for the Numberphile video on Witness numbers recently with Matt Parker. I think the fastest perfect test takes time proportional to the sixth power of the number of digits, but there may be a faster one since.