the nth term formula of the Fibonacci sequence from a quadratic equation

  Рет қаралды 93,223

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 197
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Learn more math by visiting Brilliant 👉 brilliant.org/blackpenredpen/ (20% off with this link!)
@anilkumarsharma8901
@anilkumarsharma8901 2 жыл бұрын
Artificially intelligent calculators banva do phir sara desh main supply karo muft main Sabhi tarah ki economy apkey naam Chalney lagegi
@rosieroti4063
@rosieroti4063 2 жыл бұрын
Follow up question. Please solve this: What is the value of 1/1 + 1/2 + 1/3 + 1/5 + 1/8 + 1/13 + ..... The denominators are in Fibonacci sequence. Would love to see a video on that.
@AnonimityAssured
@AnonimityAssured 2 жыл бұрын
Ah, the wonderful properties of phi! Here's another interesting set: 0φ² = φ⁰ − 1 1φ² = φ¹ + 1 1φ² = φ² + 0 2φ² = φ³ + 1 3φ² = φ⁴ + 1 5φ² = φ⁵ + 2 8φ² = φ⁶ + 3 13φ² = φ⁷ + 5 21φ² = φ⁸ + 8 This can be extended in either direction. The underlying formula is: Fₙφ² = φⁿ + Fₙ₋₂, where Fₙ is the nth Fibonacci number. (I wish KZbin formatting options were better.)
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
In fact, φ^n = F(n)·φ + F(n - 1) for all n, where F is the Fibonacci sequence.
@jakobr_
@jakobr_ 2 жыл бұрын
Yes, this is trivially equivalent to the pattern BPRP explored in this very video
@AnonimityAssured
@AnonimityAssured 2 жыл бұрын
@@jakobr_ _My_ pattern is _not_ equivalent to the one presented in the video, as it has a fixed phi squared term. Angel's pattern, on the other hand, is essentially that derived in the video.
@chrisg3030
@chrisg3030 2 жыл бұрын
Here's a property better revealed by the caret symbol ^ rather than a superscript: (φ^1)+1 = φ^(1+1). I call it the bracket shift law.
@jakobr_
@jakobr_ 2 жыл бұрын
@@AnonimityAssured Oh, I see that now. My mistake.
@pseudo_goose
@pseudo_goose 2 жыл бұрын
I didn't recognize it until the end, but that polynomial is the characteristic polynomial of the Fibonacci recurrence! Just learned about this method of solving recurrences in combinatorics this semester, and this is a great example of that method. Wow
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
This is not unique to the Fibonnaci sequence. In fact, all sequences satisfying a recursive relation A(M)·S(N + M) + A(M - 1)·S(N + M - 1) + ••• + A(1)·S(N + 1) + A(0)·S(N) = 0 are given by S(N) = C(0)·[x(0)]^N + C(1)·[x(1)]^N + ••• + C(M - 2)·[x(M - 2)]^N + C(M - 1)·[x(M - 1)]^N, where x(0), ..., x(M - 1) are all the roots, assuming they are distinct, of the polynomial A(M)·x^M + A(M - 1)·x^(M - 1) + ••• + A(1)·x + A(0).
@msman3249
@msman3249 10 ай бұрын
He just casually extended the Fibonacci sequence to any number.
@Dreamprism
@Dreamprism 2 жыл бұрын
I was vaguely aware of this explicit formula before but had never proven it. Turns out it was less complicated than I was expecting. Very cool.
@hydropage2855
@hydropage2855 2 жыл бұрын
He proved it years back. Look for it. He set it up as a difference equation (not a differential equation but very similar to solve). It was quite the mess he made
@tubbo2780
@tubbo2780 2 жыл бұрын
The sequence can also be represented as a system of linear equations, and, when put into matrix form, you can derive the golden ratio by finding the eigenvalues of the transformation matrix.
@gillesphilippedeboissay109
@gillesphilippedeboissay109 2 жыл бұрын
I used to solve it by solving Fn+1=Fn+Fn-1 directly r^2=r+1 r1=(1+sqrt(5))/2 r2=(1-sqrt(5))/2 Fn=A * r1^n + B * r2^n Then find A an B with F0=F1=1
@phiarchitect
@phiarchitect 2 жыл бұрын
The Golden Ratio is at a pivot point between the arithmetic and geometric world. And the value that is the bridge is *one,* the unit. *x^2 = x + 1*
@dudewaldo4
@dudewaldo4 2 жыл бұрын
Can you be precise in what you mean by a pivot point?
@phiarchitect
@phiarchitect 2 жыл бұрын
@@dudewaldo4 maybe _inflection_ point is the better term. It's just poetry, after all.
@phiarchitect
@phiarchitect 2 жыл бұрын
@@dudewaldo4 but the simplest way to say it is in the geometric proportion: *a / b = b / (a + b)* or *1 / φ = φ / (1 + φ)*
@AnonimityAssured
@AnonimityAssured 2 жыл бұрын
I know what you mean. Both φ and its negative reciprocal, -1/φ, can form sequences that are simultaneously Fibonacci-type and geometric. Here are a few terms of one of those sequences in two equivalent forms, suitably spaced to keep equivalent terms approximately aligned: 0φ + 1, 1φ + 0, 1φ + 1, 2φ + 1, 3φ + 2, 5φ + 3, 8φ + 5, ... φ^0, φ^1, φ^2, φ^3, φ^4, φ^5, φ^6, ... This is actually just what BPRP was showing us, although he didn't explicitly mention the Fibonacci-type/geometric crossover. Note that each term is both the sum of the previous two terms (Fibonacci-type) and φ times the previous term (geometric). Each term in the sequence can be multiplied by any constant value, so infinitely many distinct sequences are possible, albeit differing only in scale.
@phiarchitect
@phiarchitect 2 жыл бұрын
@@AnonimityAssured What is most amazing is that nature uses this as an ordering principle.
@yoyotir1360
@yoyotir1360 2 жыл бұрын
I dealt with this equation for my final oral evaluation of highschool: The general question was the way to find the number of ways to go up a series of n stairs steps, n being a positive integer. So to find the number of ways we use a mathematical induction (not sure that's how we say it since I study mathematics in french) We want to know the number of ways to climb a staircase with n steps (n being a positive integer) knowing that we can climb one or two steps at a time. For a staircase with 0 steps There is one way to climb, for 1 step there is one way to climb a staircase, 2 ways to climb a staircase with 2 steps either by climbing 2 steps at a time or by climbing one step then a second step, for a staircase with 3 steps there are 3 ways to climb either to climb 2 steps then a step or a step then 2 steps or a step then another step then another step, the more the steps the more the number of ways increases and the longer the calculations. We define the sequence Un giving the number of ways to climb a staircase with n steps, u0=1 and u1=1 Find the number of ways to climb a staircase with n+1 steps: We can either climb a single step, so there will remain n steps to climb and the number of ways to climb n steps is one Or we can climb 2 steps and there will then remain n-1 steps to climb, the number of ways to climb n-1 steps is Un-1 So the number of ways to climb n+1 steps is therefore Un+Un-1 so Un+1=Un+Un-1 The Fibonacci sequence noted Fn is the sequence such that f0=0 and f1=1 and Fn+1=Fn+Fn-1 (Un) has the same initial terms as Fn+1 and Un has the same recurrence formula as Fn+1 so Un is the fibonacci sequence except for one term so we can express Un by Un=Fn+1 then we admit that Un is a geometric sequence Un being defined by a double recurrence we put r²=r+1 its characteristic equation which is the equation that you deal with in your video
@EE-ho1iz
@EE-ho1iz 2 жыл бұрын
I took a loooong look at the alternate proof he showed starting at 8:00, and I think I get the gist of it. Here's the recursive formula for Fibonacci sequence: F_n = F_(n-1) + F_(n-2) for any n ≥ 2 He assumed F_(n-1) and F_(n-2) to be in the exponential form a*r^(n) for r ≠ 0 and coming up with the F_n = a_1 * r_1^n + a_2 * r_2^n He then solve for r by turning the equation into a quadratic but excluding the coefficient for later. Once he had r, he subbed it back to the F_n = a_1 * r_1^n + a_2 * r_2^n. Now, he plugs in some value of n to figure out the a_1 and a_2 coefficient he excluded in the previous step. He plugs n=0 to find out that a_1 is actually equal to negative a_2. Then, he plug in n = 1 to find out that a_1 = 1. Since a_1 is equal to one, a_2 is equal to negative 1. Having all the pieces of the puzzle, he just plug everything back in and it yields the explitcit formula. Kinda neat! And that is also a good morning mental exercise Honestly, I still have two question though: Why should F_n-1 and F_(n-2) be exponential? Anyhow, thanks for reading! Edit: one question (clearly I can't count😅😅😅. Maybe the second question was "what is my second question?")
@chessematics
@chessematics 2 жыл бұрын
Fₙ₋₁ and Fₙ₋₂ are NOT exponential in the primary sense. They are the differences of two exponentials, because Fₙ is itself one such difference of two exponentials. Now with this new proof we know that those two expos are φⁿ and 1/φⁿ. It's because we are adding two of the previous terms to get the next term, which is much like the Discrete Derivative of an exponential function. Take, for example, 3ⁿ. ∆3ⁿ = 2•3ⁿ = 3ⁿ+3ⁿ It's like that. Instead of adding the same thing, we add something a bit less. And all of the above is loose, non-rigorous talk.
@tmsniper9229
@tmsniper9229 2 жыл бұрын
@@chessematics for a more rigorous proof, we can notice that it's a linear equation, so the set of it's solutions is a vector subspace with a dimension of 2(the proof of it is not hard using matrices) because it's a recursive relation between Fn and 2 previous terms so it's enough to find 2 vectors solutions linearly inpdependant and in that way you form a base for that vector subspace, in that base you can express all solution by linear combination between the 2
@chessematics
@chessematics 2 жыл бұрын
@@tmsniper9229 sir, as a 10th grader, I'm not allowed to touch Linear Algebra yet, no matter how ambitious I might be. But I am very much looking forward to finish Multivariable calculus and then maybe Linear Algebra after the Board exams of 10th, while waiting for the results.
@paulanthony312
@paulanthony312 2 жыл бұрын
Ah yes, the good old "second order linear homogeneous recurrence relation with constant coefficients" or solhrrcc for short, if you'd like. I have a proof in my discrete mathematics textbook somewhere, but suffice it to say, this method using quadratics to find an explicit formula is only effective when dealing with a recurrence relation that references the previous two terms in the sequence AND has a nonzero coefficient in front of the term two back from the nth term.
@tmsniper9229
@tmsniper9229 2 жыл бұрын
@@chessematics well, good luck on your studies fam, keep going and i know you've got what it takes
@salmonsushi47
@salmonsushi47 Жыл бұрын
Its so much easy and it also makes more sense.
@Ndiedddd
@Ndiedddd Жыл бұрын
That derivation is really clever!
@mathisnotforthefaintofheart
@mathisnotforthefaintofheart 2 жыл бұрын
Interestingly, your quadratic equation turns out to be the Characteristic Equation of a 2 by 2 matrix who powers represent successive Fibonacci numbers. From diagonalization you can then find the formula to find the nth term directly by "plugging in". I sometimes use this as an application at the end of my Linear class (time permitting). This is typically well received by the students.
@tobybartels8426
@tobybartels8426 2 жыл бұрын
Whoa, you had to bring out the _blue_ pen for this one!
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Yup 😆
@ntth74
@ntth74 2 жыл бұрын
I read this on Wikipedia and have no idea what they are talking about. But your explanation is very easy to understand. Thank you very much!
@netcat22
@netcat22 2 жыл бұрын
Wonderfully elegant method! Great video!
@jessetrevena4338
@jessetrevena4338 2 жыл бұрын
Love you videos! Best math channel on KZbin.
@threepointone415
@threepointone415 2 жыл бұрын
Wow! I’ve been trying to find a formula for the n-th number of the Fibonacci sequence, this turned out to be very helpful!
@20icosahedron20
@20icosahedron20 Жыл бұрын
2:51 Nice solving😂
@PritamShaw
@PritamShaw Жыл бұрын
I liked just after seeing the back of the tshirt lol
@Sugarman96
@Sugarman96 2 жыл бұрын
This is an interesting approach. The one that I'm familiar with is using the Z transform on the recursive formula, that one works very well.
@JohnDoe-lt4kl
@JohnDoe-lt4kl 2 жыл бұрын
This is supercool ! Now please provide an even easier proof for the closed form formula for the Bell numbers. which count the number of partitions of a set with n elements.
@andrewkarsten5268
@andrewkarsten5268 2 жыл бұрын
Which one are you referring to? Do you mean Σs_(n,k) where s_(n,k) a stirling number of second order?
@JohnDoe-lt4kl
@JohnDoe-lt4kl 2 жыл бұрын
@@andrewkarsten5268 Yes, OEIS sequence A000110.
@chrisg3030
@chrisg3030 2 жыл бұрын
In 𝔁⁵ - 𝔁³ - 𝔁² - 𝔁¹ - 𝔁¹ - 𝔁⁰ = 0, 𝔁 solves as -1, φ, -1/φ. Does it work for any other Fibonacci segment of exponents?
@jahidalic54s
@jahidalic54s 2 жыл бұрын
Whao, what a great result ! I'll use this method to create a computer program to print Fibonacci series. Thank you !!!!
@cook1416
@cook1416 2 жыл бұрын
If you want a really interesting project using this formula, try using non-integer values of n and plotting those values on the complex plane, you’ll be sure to love it!
@bruhyou197
@bruhyou197 2 жыл бұрын
0:27 lmao
@AdoNir
@AdoNir 2 жыл бұрын
Beautiful. I solved this one by diagonalizing the matrix 1 1 1 0 And putting the n-th power.
@dinosauriaman
@dinosauriaman 2 жыл бұрын
I love how he’s holding a pokeball every time he uploads these videos and solves a math problem.
@cy_rkv
@cy_rkv Жыл бұрын
It's a microphone
@landsgevaer
@landsgevaer 2 жыл бұрын
Since the second term becomes exponentially negligible, this also shows that the terms of ((1+sqrt(5))/2)^n / sqrt(5) quickly approach integer values for large n, despite it looking rather irrational. Even more interesting, so do the powers of phi itself.
@jet4794
@jet4794 2 жыл бұрын
Can you solve the following? Given any triangle where you know Side a, Area A, Angle alpha. What is the perimeter of that triangle? e.g.: A=15 cm^2 a=10 cm alpha=75 degree
@agabe_8989
@agabe_8989 2 жыл бұрын
this is truly mesmerizing, thanks m8
@kquat7899
@kquat7899 2 жыл бұрын
Another gem.
@edwardromana
@edwardromana 2 жыл бұрын
What a wonderful presentation. !!! :) Thank You so much.
@gillesbarre8527
@gillesbarre8527 2 жыл бұрын
very nice demonstration thank you
@SakretteAmamiya
@SakretteAmamiya 2 жыл бұрын
It's so brilliant!! It can be applied to any Fibbonacci-like terms, right? like, for a term starts with F1=1, F2=3 then we use x^2 = 3x + 1 to solve Fn
@kianushmaleki
@kianushmaleki 2 жыл бұрын
"It is super super cool" I totally agree. Lovely video.
@georgeb8893
@georgeb8893 2 жыл бұрын
And the Lucas sequence, 2,1,3,4,7,11,18,..., L0=2, L1=1, L(n+2)=L(n+1)+L(n), n>=0, has an even simpler formula: with phi=Golden Ratio, L(n)=phi^n+(-1/phi)^n, n>=0.
@thomasolson7447
@thomasolson7447 2 жыл бұрын
What's the lucas sequence for x^2-2*x*X+1?
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
The formula is simpler as far as coefficients are concerned, but its sequential properties are not as nice, nor is the sequence conceptually as fundamental to the theory.
@georgeb8893
@georgeb8893 2 жыл бұрын
@@angelmendez-rivera351i think I also like the Fibonacci sequence more, but what I like about the Lucas sequence is that, since the other root -1/phi has magnitude less than 1, the formula shows that simply powers of the golden ratio become asymptotic to it. ie limit as n approaches infinity of phi^n-L(n)=0.
@yoyoezzijr
@yoyoezzijr 2 жыл бұрын
This is super cool
@Leonard_Chan
@Leonard_Chan 2 жыл бұрын
Recursive formula can be done by linear differcing equation
@massimhb8674
@massimhb8674 2 жыл бұрын
This is incredibly elegant, because the only solution I knew of was linear homogeneous recurrence and whatnot. I wonder if you could generalize this line of thinking to other types of series?
@dr.rahulgupta7573
@dr.rahulgupta7573 2 жыл бұрын
Excellent presentation. Vow !!
@eri4108
@eri4108 2 жыл бұрын
ooh that's cool. I've once tried to solve the fibonacci sequence with generating functions, which also leads me to the phi but i don' know why. that's why!!
@Eduardo-tq5sk
@Eduardo-tq5sk 9 ай бұрын
You a genius indeed you my Doctor!
@diskritis2076
@diskritis2076 Жыл бұрын
this should be taught at high schools!
@vishalpatel9159
@vishalpatel9159 2 жыл бұрын
This question is ine Pathfinder mathematics Indian edition of PMI chapter example 08
@RealEverythingComputers
@RealEverythingComputers 2 ай бұрын
Thanks for the nice video!
@cmilkau
@cmilkau 2 жыл бұрын
I think if you just write φ^(n+2) = φ^(n+1) + φ^n the connection to the Fibonacci numbers is really obvious.
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
Right
@WorthlessWinner
@WorthlessWinner 2 жыл бұрын
Numberphile did a good video doing this in reverse deriving phi from this quadratic
@The1RandomFool
@The1RandomFool 2 жыл бұрын
This is relatively simple compared to the generating function method using series that I did to find the formula.
@chocomint-tw
@chocomint-tw 2 жыл бұрын
Pretty perfect!
@leofoxpro2841
@leofoxpro2841 2 жыл бұрын
I was literally thinking about this yesterday, And he made the video about it😲😲
@antoinetarant6025
@antoinetarant6025 2 жыл бұрын
The most beautiful is, this equation with sqrt of 5 et power of n always give a Natural number.
@ChizuruNoru
@ChizuruNoru 4 ай бұрын
Does anyone know where the equation x^2 - x - 1 = 0 come from?
@josephpentony4804
@josephpentony4804 2 жыл бұрын
This is such a beautiful relationship.
@universogeometrado859
@universogeometrado859 2 жыл бұрын
challenge d^2/dx^2 of (e^sin(x))/i
@christianorlandosilvaforer3451
@christianorlandosilvaforer3451 Жыл бұрын
what is most surprising for me is that u can get natural numbers trought irracional numbers... damn
@scottleung9587
@scottleung9587 2 жыл бұрын
Very cool!
@blackpenredpen
@blackpenredpen 2 жыл бұрын
thanks!
@biancanistor8606
@biancanistor8606 2 жыл бұрын
Brilliant for sure!
@rygerety8384
@rygerety8384 2 жыл бұрын
A message from today's sponsor:
@mathsenhancersclass
@mathsenhancersclass 2 жыл бұрын
Nice video thanks
@vitalsbat2310
@vitalsbat2310 2 жыл бұрын
next, differentiate the fibonacci sequence
@_wetmath_
@_wetmath_ 2 жыл бұрын
what if you put complex n into the formula, what will Fn be?
@vijaykulhari_IITB
@vijaykulhari_IITB 2 жыл бұрын
Shridharachharya formula is the best🤘🤘
@hrperformance
@hrperformance 2 жыл бұрын
That's pretty cool I must say
@isolatedpotato5757
@isolatedpotato5757 2 жыл бұрын
Is it possible if you can convert (9i)^1/3 from rectangular to polar?
@adiaphoros6842
@adiaphoros6842 2 жыл бұрын
If only all recursive relations can be solved this way.
@MichaelPennMath
@MichaelPennMath 2 жыл бұрын
They can with a bit of work....
@lelouch1722
@lelouch1722 2 жыл бұрын
LINEAR recursive relations can. When it's non linear, well... good luck.
@paulanthony312
@paulanthony312 2 жыл бұрын
In my limited experience, it's usually either this method (second order linear homogeneous with constant coefficients), or just guessing an explicit formula and then proving with induction..
@DetectiveAndrey
@DetectiveAndrey 2 жыл бұрын
@@MichaelPennMath A collab between you and blackpenredpen would be cool. : )
@thomasolson7447
@thomasolson7447 2 жыл бұрын
@@MichaelPennMath show me Chebyshev Polynomials then. It's recursive. It's just a variable. x^2-2x*X+1. I'll get you started. x^2 = 2*X*x-1 x^3 = (2*X*x-1)*x = 2*X*x^2-x = 4*X^2*x-x -2*X x^4 = (4*X^2*x-2*X-x)*x = 8*X^3*x-4*X*x -4*X^2+1 x^5=16*X^4*x-12*X^2*x+x -8*X^3+4*X x^6=32*X^5*x-32*X^3*x+6*X*x -16*X^4+12*X^2-1 In my experience with these, the x and non x can be separated into two different things. *Oh, I was looking at the wrong one. I got it figured out now. I know what's up. I'll leave it here for you guys.*
@bruno_343
@bruno_343 11 ай бұрын
is there a formula for the finite sum of the Fibonacci sequence?
@nickshales430
@nickshales430 2 ай бұрын
Yes, sum(F_n,n=1..N)=F_(N+2)-1.
@EducarePakInd
@EducarePakInd 2 жыл бұрын
nice video sir thanks for sharing this video . Wao, what a great result ! I'll use this method to create a computer program to print Fibonacci series. Thank you !
@procerpat9223
@procerpat9223 2 жыл бұрын
pure magic
@PlayNewApp
@PlayNewApp 2 жыл бұрын
Awesome, my friend. 😍💕 Thanks for sharing. 👍 Have a nice weekend. 🤗✨
@leolesnjakovic8725
@leolesnjakovic8725 2 жыл бұрын
VERY INFORMATION VIDEO!!! TANK YU!! (soryr for bad egluish)
@squidy7771
@squidy7771 2 жыл бұрын
That's really cool
@star_ms
@star_ms 2 жыл бұрын
Wow...that's elegant...
@harryguanous7198
@harryguanous7198 2 жыл бұрын
I've never been on this video this early, this looks very nice
@alikhamraev2809
@alikhamraev2809 2 жыл бұрын
Omg. You finally shaved that goatee. Thank God. My prayers were heard. Now it's 10 times more enjoyable to watch your vids
@claudebalzano7031
@claudebalzano7031 2 жыл бұрын
J'adore !!!
@alibekturashev6251
@alibekturashev6251 2 жыл бұрын
Okey I have a problem for you. The circle of x^2 + y^2 = R^2 and parabola y = R - a*x^2 are given (a > 0). Find all values of the parameter a such that the parabola and the circle have only one common point
@spaghettiking653
@spaghettiking653 2 жыл бұрын
Thanks, this is a nice one :) First, if the curves are touching, then that means that their equations are both satisfied at once, and so are their derivatives, so: x^2+y^2 = R^2 (circle equation) y = R-ax^2 (parabola equation) If both of the equations are true (at the single point where they touch), then we can substitute y = R-ax^2 into the circle equation: x^2 + (R-ax^2) ^2 = R^2, expanding gives x^2 + R^2 -2aRx^2 + a^2 x^4 = R^2 →a^2 x^4 + x^2 -2aRx^2 = 0 →a^2 x^4 + (1 - 2aR) x^2 = 0 This is a quadratic equation (in x^2), so we can solve by factoring or quadratic formula, I'll just tell you right here the answers are x^2 = 0 or x^2 = (2aR-1)/a^2. Now, the derivatives are also equal. If we have x^2+y^2 = R^2, then 2x + 2y (dy/dx) = 0, dy/dx = -x/y. We know that y = R-ax^2, so dy/dx of the circle is -x/(R-ax^2). The parabola's derivative is dy/dx = -2ax; now we set them equal to each other: -x/(R-ax^2) = -2ax, 1/(R-ax^2) = 2a, →2a(R-ax^2) = 1, →-2a^2 x^2 + 2aR -1 = 0 Now you can see why we solved for x^2 :) Plug in the x^2 expression into this equation: -2a^2 ((2aR-1)/a^2) + 2aR -1 = 0 -2(2aR-1) + 2aR -1 = 0 -4aR+2 + 2aR -1 = 0 -2aR + 1 = 0 1 = 2aR Thus a = 1/2R ! Alternatively, if we use the solution x^2 = 0, we get -2a^2(0) + 2aR -1 = 0, 2aR = 1, a = 1/2R once again :)
@spaghettiking653
@spaghettiking653 2 жыл бұрын
Also, if you let R < 0, then a < 0 still works, so you can extend the possibilities for a to all real numbers if you like.
@alibekturashev6251
@alibekturashev6251 2 жыл бұрын
@@spaghettiking653 no, this problem came from my physics problem where R>0😅. I needed to find minimal velocity of a stone which was thrown from the top of a hemisphere such that it won't touch it again
@spaghettiking653
@spaghettiking653 2 жыл бұрын
@@alibekturashev6251 Ah, makes sense :L. What was the velocity you got in the end?
@alibekturashev6251
@alibekturashev6251 2 жыл бұрын
@@spaghettiking653 v >= scrt(gR)
@LuisFernando21Gta
@LuisFernando21Gta 2 жыл бұрын
I use z-transform to this problem
@manjugagare802
@manjugagare802 2 жыл бұрын
Q.are there any two numbers whose both addition and multiplication is 1?
@timothybohdan7415
@timothybohdan7415 5 ай бұрын
No. Let x be the number. Then x^2=1 and x+x=1. The solution to the first is x=+/-1. The solution to the second is x=1/2. Thus, no number x exists.
@holyshit922
@holyshit922 2 жыл бұрын
With generating function we can solve recursive equation from scratch
@FunkyPhilMusic
@FunkyPhilMusic 2 жыл бұрын
Why are you keeping the ball in your hand?
@xorgate667
@xorgate667 2 жыл бұрын
Warning jumpscare at 2:50
@mrinalrabha1759
@mrinalrabha1759 2 жыл бұрын
What about tribonacci sequence ?
@mrinalrabha1759
@mrinalrabha1759 2 жыл бұрын
I couldnt solve thats why asking ...
@noahvale2627
@noahvale2627 2 жыл бұрын
Cool beans for sure.
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Thanks!
@ashutoshsahoo351
@ashutoshsahoo351 2 жыл бұрын
DIntegrate(((1/Cos(x))*Sqrt(1+Sin(x)^2/Cos(x)^4)),x,0,Pi/3) please solve kardo
@rshawty
@rshawty 2 жыл бұрын
BAHAHAHA I noticed this fact alone like a month ago and now you make a video on it ! 😚
@johnnolen8338
@johnnolen8338 2 жыл бұрын
Sounds like an accomplishment to be proud of, not something to upset 😡 you because somebody else figured it out too. Nothing in mathematics is secret.
@rshawty
@rshawty 2 жыл бұрын
@@johnnolen8338 noooo i’m happy !
@rshawty
@rshawty 2 жыл бұрын
@@johnnolen8338 I find the fact funny actually so i’m happy, first because i’m right finally and also because bprp make a video on it
@johnnolen8338
@johnnolen8338 2 жыл бұрын
@@rshawty Then I am confused by your emoji. 😕
@rshawty
@rshawty 2 жыл бұрын
@@johnnolen8338 convinced now ?
@cmilkau
@cmilkau 2 жыл бұрын
I wonder how this was discovered. Maybe someone "encoded" the pair (F(n-1),F(n-2)) as a polynomial F(n-1)x + F(n-2).
@paulchapman8023
@paulchapman8023 2 жыл бұрын
I wonder if there is a contiguous real function of x that gives the Fibonacci numbers at integer values of x, but also real values at non-integer values of x. In theory, just taking the absolute value of the function, i.e. f(x) = |([(1+sqrt5)/2]^x - ([(1-sqrt5)/2]^x)/sqrt5| should do the trick.
@chrisrybak4961
@chrisrybak4961 2 жыл бұрын
Nice thought, but the Problem is that phi2 is negative, so non-integer x will generate complex results…
@paulchapman8023
@paulchapman8023 2 жыл бұрын
@@chrisrybak4961 Absolute values are always real and positive, and every complex number has an absolute value. (When expressed in polar coordinates, i.e. re^(i*theta), r is the absolute value.)
@assassin01620
@assassin01620 2 жыл бұрын
@@paulchapman8023 Is the function f(x) = [ (φ^x) - cos(πx)*(φ^(-x)) ] / sqrt(5) what you are looking for?
@chrisrybak4961
@chrisrybak4961 2 жыл бұрын
@@paulchapman8023 Ah, ok, fair enough!
@paulchapman8023
@paulchapman8023 2 жыл бұрын
@@assassin01620 Yes, that checks out. Thank you.
@l.lawliet1551
@l.lawliet1551 2 жыл бұрын
Tell me the location of fibonacci.
@BRYDN_NATHAN
@BRYDN_NATHAN 2 жыл бұрын
. thank you for the stories my guess a negative phi is imaginary like square root a negative one. .
@paulxx4829
@paulxx4829 2 жыл бұрын
sin(54°) = (1+sqrt(5)) / 4?
@sethdon1100
@sethdon1100 2 жыл бұрын
Yup.
@maxvangulik1988
@maxvangulik1988 Жыл бұрын
Could somebody use this formula to make it continuous?
@maxvangulik1988
@maxvangulik1988 Жыл бұрын
Like the gamma function but not an integral
@rahimmazouz815
@rahimmazouz815 2 жыл бұрын
رائع
@hghghghghghghghghgh
@hghghghghghghghghgh 2 жыл бұрын
Haha, matrix exponentiation go brrrr
@aashsyed1277
@aashsyed1277 2 жыл бұрын
But how do we know that x²-x-1 is the correct quadratic?
@dqrk0
@dqrk0 2 жыл бұрын
if u dive into the theory of recursive sequences, u will find about characteristic polynomials of a sequence. for example, for the fibonacci sequence recursive formula is a_(n+2) = a_(n+1) + a(n), so its polynomial is x² - x - 1
@MarioFanGamer659
@MarioFanGamer659 2 жыл бұрын
The idea is that you with the sequence f_(n) + f_(n+1) = f_(n+2), the ratio of the current and next number approach a certain value the higher n becomes. At infinity, the values are equal so you can say that f_(n+2) / f_(n+1) = f_(n+1) / f_(n). With a = f_(n), b = f_(n+1) and c = f_(n+2), you get the equations c/b = b/a and c = a + b which in turn can be written as (a+b)/b = b/a which can be rewritten as 1/(b/a) + 1 = b/a. If you replace b/a by Φ, you get 1/Φ + 1 = Φ and multiplied by Φ, the equation turns into Φ² = Φ + 1. Move all the numbers to the left side and you get 0 = Φ² - Φ - 1.
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
We know it because the Fibonacci sequence is defined by the recursion F(n + 2) = F(n + 1) + F(n), which can be rewritten as F(n + 2) - F(n + 1) - F(n) = 0. Now, notice that x^2 - x - 1 = 0 implies x^(n + 2) - x^(n + 1) - x^n = 0, and so F(n) = x^n solves the equation if x solves x^2 - x - 1 = 0.
@aashsyed1277
@aashsyed1277 2 жыл бұрын
@@angelmendez-rivera351 yes I know but can this method which is used in the video be extended to solve an+1=b*an+c*a n-1 ???
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
@@aashsyed1277 Your notation is incomprehensible, so I am not sure of what you are asking me.
@codicide
@codicide 2 жыл бұрын
He has Mewtwo
@arequina
@arequina 2 жыл бұрын
To phi or not to phi. That is the question.
@cmayy8317
@cmayy8317 2 жыл бұрын
Psalms 23
@EternalLoveAnkh
@EternalLoveAnkh 2 жыл бұрын
I love this proof. RJ
@SmallsProudctions
@SmallsProudctions 2 жыл бұрын
Nerds rock 🤓
@botiromondavlatov3299
@botiromondavlatov3299 2 жыл бұрын
👍👍👍👍
EXTREME quintic equation! (very tiring)
31:27
blackpenredpen
Рет қаралды 660 М.
Complex Fibonacci Numbers?
20:08
Stand-up Maths
Рет қаралды 1 МЛН
The Singing Challenge #joker #Harriet Quinn
00:35
佐助与鸣人
Рет қаралды 42 МЛН
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН
I differentiated the quadratic formula
9:59
blackpenredpen
Рет қаралды 246 М.
You, Me and The Legend of Question 6
19:27
blackpenredpen
Рет қаралды 325 М.
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 118 М.
Random Fibonacci Numbers - Numberphile
10:36
Numberphile
Рет қаралды 447 М.
7 factorials you probably didn't know
12:59
blackpenredpen
Рет қаралды 403 М.
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
the last question on a Harvard-MIT Math Tournament!
11:12
blackpenredpen
Рет қаралды 605 М.
The Singing Challenge #joker #Harriet Quinn
00:35
佐助与鸣人
Рет қаралды 42 МЛН