The return of big integrals.

  Рет қаралды 14,575

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 54
@jimschneider799
@jimschneider799 2 жыл бұрын
I tackled this by substituting sin(t) into the Taylor series for atan(x) about x = 0, then dividing the result through by sin(t), and doing term-by-term integration on the series. This gave me the same series as you derived at the end. Of course, then I got stuck because I didn't recognize the power series for asinh(x) ...
@Swybryd-Nation
@Swybryd-Nation 2 жыл бұрын
Yes this technique should be called Euler’s Technique. he used it to evaluate integral of sin(ln(t))/ln(t)*dt from 0 to 1. This gives pi/4 see Dunham’s Calculus Gallery book for details. You can use this for Achmed’s integral as well.
@Reboxy1
@Reboxy1 2 жыл бұрын
Oh man the same thing happend to me I was about to tipe that
@0xTJ
@0xTJ 2 жыл бұрын
Thanks for the re-upload!
@englematics
@englematics 2 жыл бұрын
I propose a solution using Feynman's technique which I think is simpler. Let f(x) = int_0^pi/2 (arctan(x*sint))/sint dt. Then h'(x) = int_0^pi/2 1/(1+x^2*sin^2 t) dt. Multiply top and bottom by sec^2 t. Then substitute u = sqrt(1+x^2)*tan t. As a result h'(x) = pi/2 * 1/sqrt(1+x^2). Then h(x) = pi/2 * ln|x+sqrt(1+x^2)|+C. Since h(0) = 0, C = 0. Then h(1) = pi/2 * ln(1+sqrt2) which is the same answer!
@heungseoblee5980
@heungseoblee5980 2 жыл бұрын
I have doubts about mathematical validity of Feynman's technique - Maybe I have no talent about mathematics :(. NEVERTHELESS, this way is brilliant!
@xizar0rg
@xizar0rg 2 жыл бұрын
Given the quantity and variety of videos done, I feel like enumerating them in the title (similar to how lockpickinglawyer does) would be valuable for reference. This is especially true given that many of the videos have frivolous titles, such as this one ("the return of big intervals").
@gastonsolaril.237
@gastonsolaril.237 2 жыл бұрын
Nice one, M! Though aren't you missing the "2n + 1" denominator in the leftmost integral term that you are writing at 5:38?
@SuperSilver316
@SuperSilver316 2 жыл бұрын
I mistakenly read this video as arcsin(sin(t)) and was wondering why you didn’t just do t/sin(t), and now I see the error of my ways. That’s still a good problem to have tackled before I watched this though!
@noahtaul
@noahtaul 2 жыл бұрын
22:57
@agamanbanerjee9048
@agamanbanerjee9048 2 жыл бұрын
16:21 Shouldn't that be dx then dy?
@holyshit922
@holyshit922 2 ай бұрын
(-1)^n*(2n-1)!!/(2n)!! simplifies to -1/2 choose n and from binomial expansion we have \sum_{n=0}^{\infty}{{-1/2 \choose n }\cdot x^{2n}} = \frac{1}{\sqrt{1+x^2}} If we integrate both sides we will get arsinh(1)
@FreshBeatles
@FreshBeatles 2 жыл бұрын
and thats a good place to start
@SuperSilver316
@SuperSilver316 2 жыл бұрын
One other idea I had you can integrate by parts and make some substitutions and the pictured integral reduces into int(arccosh(x)/(x^2+1)) from [1,inf) Which at least from a cursory check through wolfram gives the same answer. Curious to see if anyone has any ideas on how to tackle it? I think contour integral should work theoretically, Collects residues at i and -i, and you are integrating along the principle branch of the hyperbolic inverse cosine, so I think it shouldn’t be too hard?
@jorex6816
@jorex6816 2 жыл бұрын
If I'm not mistaken the derivative of ln(1+√(1−y²)) is actually y/(y²−√(1−y²)−1). At least WolframAlpha says so and I got the same result. Or is there a possible factorization I'm missing?
@jorex6816
@jorex6816 2 жыл бұрын
Yeah okay, after quiet a lot of manipulations I got the same result as the one stated in the video
@bjornfeuerbacher5514
@bjornfeuerbacher5514 2 жыл бұрын
@@jorex6816 You don't need much manipulation. The derivative is 1/(1+√(1−y²)) times (-y/√(1−y²)). Multiplying the numerator and denominator of the first fraction with (1-√(1−y²)) gives (1-√(1−y²))/y² times (-y/√(1−y²)). And then you are almost done.
@jorex6816
@jorex6816 2 жыл бұрын
@@bjornfeuerbacher5514 Stimmt! I multiplied all the inner derivatives together and only then rationalized the denominator which lead to more steps than necessary.
@a_llama
@a_llama 2 жыл бұрын
Great problem! Also, the audio's somewhat tinny
@thomashoffmann8857
@thomashoffmann8857 2 жыл бұрын
The fraction in front of the integral temporarily got invisible. But luckily it reappeared around 7:20 🤗
@tgx3529
@tgx3529 2 жыл бұрын
Peace for all people!! arctg(sinx)=sum[(-1)^n *(sinx)^(2n+1)/(2n+1)] n=0;....., We have then integral suma(-1)^n (sinx)^(2n)/(2n+1) =suma (-1)^n/(2n+1) integral(sinx)^(2n)dx , we can use finally Wallis formula for the integral, there Is also uniform convergention of series by Dirichlet test.
@carstenmeyer7786
@carstenmeyer7786 2 жыл бұрын
As an alternative to _Feynman's Trick,_ you can also rewrite the given integral as a double integral: *I := ∫_0^{ 𝜋/2 } arctan( sin(t) ) / sin(t) dt* *=: ∫_0^{ 𝜋/2 } ∫_0^1 f(r, t) dr dt | f(r, t) := 1 / ( 1 + r^2 * sin^2(t) )* The integrand *f* is absolutely integrable and the integration bounds are constant, so we may change the order of integration via _Fubini's Theorem._ The substitution *s := tan(t)* yields a much nicer double integral: *I = ∫_0^1 ∫_0^∞ 1 / (1 + s^2 + r^2s^2) ds dr* *= ∫_0^1 [ arctan( s√(1 + r^2) ) / √(1 + r^2) ]_0^∞ dr* The upper bound yields *𝜋/2 / √(1+r^2)* while the lower bound vanishes. We are left with *I = 𝜋/2 * ∫_0^1 1 / √(1 + r^2) dr = 𝜋/2 * [ arsinh(r) ]_0^1 = 𝜋/2 * arsinh(1)*
@dattierarbre9294
@dattierarbre9294 2 жыл бұрын
Fantastic
@richardheiville937
@richardheiville937 2 жыл бұрын
Anyway, if you want to use series expansion, what about Wallis' integrals?
@jorgepresto8823
@jorgepresto8823 2 жыл бұрын
My solution to the problem is the following: In te target integral, change variable x=sin(t); in the next integral develop in power series Arctan(x) ( it can be done because x is in [0,1]). In the resulting integral change variable y=(1-x^2)^0.5 and finally change variable y=sin(w). The final integral is integral(cos^(2n)(w) dw) which drive you to the solution.
@DWestheim
@DWestheim 2 жыл бұрын
This escalated quickly.
@MultiWiskid
@MultiWiskid 2 жыл бұрын
Impressive!
@faresberarma3349
@faresberarma3349 2 жыл бұрын
can be done easily within one line
@ChefSalad
@ChefSalad 2 жыл бұрын
I think your mic's gain was set a bit too hot for this recording.
@threstytorres4306
@threstytorres4306 2 жыл бұрын
I hope you edit it, if not i'm bad for you
@SuperSilver316
@SuperSilver316 2 жыл бұрын
I figured it out!!! You can integrate arccosh(x)/(x^2+1) through contour integration!! Look at the integral of (arccosh(x))^2/(x^2+1). Take the principle branch where the function is analytic everywhere except for (-inf,1], and use a keyhole contour with an indented circle around z = 1. The integral around the large semi circle vanishes and so does the indented circle around z =1, so all you have are the contributions from the residues, and you can collect the integral you want from the negative real axis, but you have to be very careful about how you define the arccosh(x) about the negative real axis, specifically in the regions (-inf,-1] and (-1,1). But it can be done!!
@holyshit922
@holyshit922 Жыл бұрын
I calculated it with double integral arctan(sin(x))=Int(sin(x)/(1+y^2sin(x)),y=0..1)
@StarsManny
@StarsManny 2 жыл бұрын
Audio works now 👍
@mihaipuiu6231
@mihaipuiu6231 2 жыл бұрын
Beautiful,....but ..hard demonstration. The first part was easier finally, I understood all. The formula with arcsinh(1) I have to look at it separately.For me math. is a hobby.
@richardheiville937
@richardheiville937 2 жыл бұрын
Consider F(a)=\int_0^{\pi/2} \frac{\arctan(a\sin x}{sin x}dx ,compute F'(a) and it's easy to compute F(1).
@bjornfeuerbacher5514
@bjornfeuerbacher5514 2 жыл бұрын
I wouldn't say it's "easy" to compute F(1) - but at least it's _way_ easier than what Michael did do here. :D
@richardheiville937
@richardheiville937 2 жыл бұрын
@@bjornfeuerbacher5514 1/sqrt(1+x^2) has an antiderivative that is well-known. The harder part is to compute \int_0^{\frac{\pi}{2}} \frac{1}{1+a^2\sin^2 x}dx The change of variable u=\cot x is probably a good one here.
@bjornfeuerbacher5514
@bjornfeuerbacher5514 2 жыл бұрын
@@richardheiville937 I did it this way: \frac{1}{1 + a² sin²x} = \frac{1}{cos²x + sin²x + a² sin²x} = \frac{1}{1+ (a²+1) tan²x} \frac{1}{cos²x}, and then use u = \sqrt{a²+1} tan x.
@richardheiville937
@richardheiville937 2 жыл бұрын
@@bjornfeuerbacher5514 Your change of variable is weird. It will introduce the variable a in the bounds. IMHO, u=cot x is better.
@bjornfeuerbacher5514
@bjornfeuerbacher5514 2 жыл бұрын
@@richardheiville937 No, the bounds will simply become 0 and infinity.
@StarsManny
@StarsManny 2 жыл бұрын
Audio is broken ☹️
@0xTJ
@0xTJ 2 жыл бұрын
It works fine for me.
@federicopagano6590
@federicopagano6590 2 жыл бұрын
Its just insane lol
@franksaved3893
@franksaved3893 2 жыл бұрын
When the professor says there will be only one question in the calculus 2 exam. The question:
@ChefSalad
@ChefSalad 2 жыл бұрын
The inverse function of sinh(x) is not called the hyperbolic arcsine of x nor is it written arcsinh(x). The actual inverse function is called the "hyperbolic area sine" of x and is written arsinh(x). Thought I'd let you know.
@nasim09021975
@nasim09021975 2 жыл бұрын
I waited 23 minutes to hear the coveted “…and that’s a good place to stop” ☺️😃
@reggaetyro9659
@reggaetyro9659 2 жыл бұрын
Sin sinner peculiar morals. Etymology. Science. Scientific law. Law.
@hassanalihusseini1717
@hassanalihusseini1717 2 жыл бұрын
OK, nice video, but that was a mouthful really! 🙂
@theoliveinyourmartini283
@theoliveinyourmartini283 2 жыл бұрын
There's no audio
@0xTJ
@0xTJ 2 жыл бұрын
Try closing and re-opening, there is audio.
@johns.8246
@johns.8246 2 жыл бұрын
Horrible. Can't you just use a Taylor series expansion and then integrate?
Thanks for the very nice integral!
13:05
Michael Penn
Рет қаралды 20 М.
I really like this integral
18:17
Michael Penn
Рет қаралды 27 М.
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
How to do two (or more) integrals with just one
18:03
Morphocular
Рет қаралды 390 М.
I solved this two ways -- which do you prefer??
16:04
Michael Penn
Рет қаралды 6 М.
cos within log within log -- an integration spectacular!
18:13
Michael Penn
Рет қаралды 17 М.
One tough integral
18:22
Michael Penn
Рет қаралды 21 М.
Inside the V3 Nazi Super Gun
19:52
Blue Paw Print
Рет қаралды 2,6 МЛН
The phantom integral suggester.
13:17
Michael Penn
Рет қаралды 30 М.
Complex Numbers in Quantum Mechanics
19:57
Richard Behiel
Рет қаралды 190 М.
Can you solve this integral?
19:56
Michael Penn
Рет қаралды 30 М.
The secret behind constants
18:04
MAKiT
Рет қаралды 78 М.
Can you guess the trick for this integral?
13:21
Michael Penn
Рет қаралды 30 М.
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН