Why can't people teach like this. You compressed 20 years of guess work into 10 minutes of reality...for that, I say, THANK YOU!
@bestman26707 жыл бұрын
An extremely helpful video! Your explanations were clear and easy to follow. I enjoyed every minute!
@shahreensumaria479811 жыл бұрын
Your explanation is brilliant. I was really struggling with the concept of stability and your video helped me greatly. Thanks alot. :D
@youmah259 жыл бұрын
10 minutes of pure learning: thank you gracias grazie Danke merci شكرا
@Royalpower10010 жыл бұрын
very useful but needs to go in more detail. Especially when f(x) is a function that is very difficult to draw (eg. x/(a+x)-x ) how do you determine the sign of the slope then ..
@duanenykamp570010 жыл бұрын
That's right. This video only talks about the graphical approach. For functions that are difficult to graph, an analytic approach might be better. That happens in the "next video" mentioned at the end. If you click on the above link to see the Math Insight page where these videos are embedded, the analytic approach video appears below. Or the analytic approach video is availble at: The stability of equilibria of a differential equation, analytic approach.
@giantDalton4 жыл бұрын
Amazing explanation, thank you.
@viji00111 жыл бұрын
u should be my lecturer for dynamical systems.
@란다우5 жыл бұрын
Thank you! This is wonderful.
@rohitderaj40762 жыл бұрын
Great explanation!! thank you!!
@duanenykamp57002 жыл бұрын
You're welcome!
@1991sherlock9 жыл бұрын
Great Video. Thanks a lot!
@snipy36854 жыл бұрын
thank you man you saved me
@mohammadibrahim45575 жыл бұрын
thank you million times
@peijiaguo4692 жыл бұрын
Thank you very much.
@dharamrajtasa71048 жыл бұрын
what is the need of stabilty of a differential equation
@duanenykamp57007 жыл бұрын
If an equilibrium is not stable, then that equilibrium is unlikely to be observed in a real system, as any small change could move the state of the system off the equilibrium. Similar to how it is hard to have a pencil setting on a stationary table and balanced on its point.