The stability of equilibria of a differential equation, analytic approach

  Рет қаралды 49,026

Duane Nykamp

Duane Nykamp

Күн бұрын

Пікірлер
@lokidragion4859
@lokidragion4859 4 жыл бұрын
Thank you, this is such a great video, you actually explain it way better than my teacher
@Taddius4zindagi
@Taddius4zindagi 11 жыл бұрын
Super thanks! People who selflessly spare time and effort to help sc****d students like us restore faith in humanity... God bless you...
@shadenaguirre6317
@shadenaguirre6317 7 жыл бұрын
what makes the differential equation semi-stable?
@viji001
@viji001 11 жыл бұрын
thanks , it was great. I choose dynamical system for degree, coz of u
@ankit45822
@ankit45822 7 жыл бұрын
I can not understand that how the arrow moves away or toward from origin. In which function do you ask ?
@Mr1Lemos
@Mr1Lemos 8 жыл бұрын
Thanks for your video! Very clear and easy to understand :)
@danieltian5088
@danieltian5088 6 жыл бұрын
Awesome video. Thank you
@robert6816
@robert6816 8 жыл бұрын
Thank you...concise and clear
@tomenart
@tomenart 8 жыл бұрын
great video man
@uditsaxena3844
@uditsaxena3844 4 жыл бұрын
thanks i understood it all
@Fabian_AD
@Fabian_AD 7 жыл бұрын
What if it's not an autonomous differential equation?
@duanenykamp5700
@duanenykamp5700 7 жыл бұрын
If the differential equation isn't autonomous, then it presumably doesn't have any equilibria, as the rates of change would be explicitly changing with time. None of this analysis would apply.
@Fabian_AD
@Fabian_AD 7 жыл бұрын
What about an equation like: y' = (y-1)/(t^2) Would it be ok to just set y' = 0 and get rid of the t^2?
@duanenykamp5700
@duanenykamp5700 7 жыл бұрын
In this case, you can directly calculate that y(t)=1 is a solution to the differential equation, at least if you start with a positive t. For y larger than 1, y' is clearly positive. For y smaller than 1, y' is clearly negative. Hence, nearby solutions are moving away from the solution y(t)=1.
The stability of equilibria of a differential equation
10:03
Duane Nykamp
Рет қаралды 182 М.
Fixed points and stability of a nonlinear system
18:01
Jeffrey Chasnov
Рет қаралды 113 М.
Одну кружечку 😂❤️
00:12
Денис Кукояка
Рет қаралды 2,1 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 37 МЛН
Why no RONALDO?! 🤔⚽️
00:28
Celine Dept
Рет қаралды 101 МЛН
Differential Equations: The Language of Change
23:24
Artem Kirsanov
Рет қаралды 90 М.
1.1 Stability of Fixed Points PROOF | Nonlinear Dynamics
5:52
Virtually Passed
Рет қаралды 10 М.
A graphical approach to solving an autonomous differential equation
12:52
Linearization of two nonlinear equations
21:41
MIT OpenCourseWare
Рет қаралды 73 М.
Autonomous Equations, Equilibrium Solutions, and Stability
10:20
Dr. Trefor Bazett
Рет қаралды 107 М.
Linear Stability Analysis | Dynamical Systems 3
10:24
Faculty of Khan
Рет қаралды 46 М.
Phase Plane Plots
10:27
Dr. Underwood's Physics YouTube Page
Рет қаралды 179 М.
25.2 Stable and Unstable Equilibrium Points
7:22
MIT OpenCourseWare
Рет қаралды 110 М.
Одну кружечку 😂❤️
00:12
Денис Кукояка
Рет қаралды 2,1 МЛН