Thank you, this is such a great video, you actually explain it way better than my teacher
@Taddius4zindagi11 жыл бұрын
Super thanks! People who selflessly spare time and effort to help sc****d students like us restore faith in humanity... God bless you...
@shadenaguirre63177 жыл бұрын
what makes the differential equation semi-stable?
@viji00111 жыл бұрын
thanks , it was great. I choose dynamical system for degree, coz of u
@ankit458227 жыл бұрын
I can not understand that how the arrow moves away or toward from origin. In which function do you ask ?
@Mr1Lemos8 жыл бұрын
Thanks for your video! Very clear and easy to understand :)
@danieltian50886 жыл бұрын
Awesome video. Thank you
@robert68168 жыл бұрын
Thank you...concise and clear
@tomenart8 жыл бұрын
great video man
@uditsaxena38444 жыл бұрын
thanks i understood it all
@Fabian_AD7 жыл бұрын
What if it's not an autonomous differential equation?
@duanenykamp57007 жыл бұрын
If the differential equation isn't autonomous, then it presumably doesn't have any equilibria, as the rates of change would be explicitly changing with time. None of this analysis would apply.
@Fabian_AD7 жыл бұрын
What about an equation like: y' = (y-1)/(t^2) Would it be ok to just set y' = 0 and get rid of the t^2?
@duanenykamp57007 жыл бұрын
In this case, you can directly calculate that y(t)=1 is a solution to the differential equation, at least if you start with a positive t. For y larger than 1, y' is clearly positive. For y smaller than 1, y' is clearly negative. Hence, nearby solutions are moving away from the solution y(t)=1.