The Yoneda Perspective

  Рет қаралды 10,338

Rooney

Rooney

Күн бұрын

Пікірлер: 26
@sadface7457
@sadface7457 3 жыл бұрын
This is quite profound. This lemma is perhaps the foundation for the knowledge graph which stores representation of objects and entities and hyperlinks between them.
@aron8999
@aron8999 2 жыл бұрын
I think you're just thinking of a graph.
@sumitmittal88
@sumitmittal88 5 ай бұрын
I think me meant knowledge graphs ie multi layered graph HNSW
@Jaylooker
@Jaylooker 7 ай бұрын
Yoneda’s lemma and its dual allow any small category C to be described from morphisms into and out of it also known as its hom-set. Given an object X ∈ C there exists a functor Hom(-,X): C^op -> Set describing morphisms into C. For morphisms out of C there are also exists a functor Hom(X,-): C -> Set. This provides a concrete way to implement Grothendieck’s relative point of view of considering morphisms of a category instead of objects of that category in order to understand a category. It is important to note that the functor Hom(-,X): C^op -> Set is a presheaf of the category C. The presheaves are the probing questions or morphisms into C as the maps f: - -> C you mentioned in your examples of a deck of cards and topological space.
@JakubWaniek
@JakubWaniek Жыл бұрын
I would argue that a "nicer" example of a category enriched over itself is the category of k-vector spaces (or more generally, R-modules). Indeed, the set of linear maps between two vector spaces is a vector space, and composition is bilinear (so induces a canonical linear map from the tensor product of hom-spaces). Great video!
@gabrielrhodes9943
@gabrielrhodes9943 Жыл бұрын
Fantastic explanation! I have not seen Yoneda's Lemma introduced so delicately before and it has been much needed.
@nathanryan12
@nathanryan12 Жыл бұрын
Very cool! I have been very curious about the Yoneda lemma, and this was illuminating.
@gabibensimon9
@gabibensimon9 Жыл бұрын
Very well done , best explanation on KZbin.
@Karolkoks6
@Karolkoks6 2 жыл бұрын
Thank you for sharing your thoughts about such advanced and profound math problems. I think your videos are quite illuminating and I would like to express my respect for your worthwhile work!
@sadface7457
@sadface7457 3 жыл бұрын
There are so few channels exploring what would be considered advance mathmatical topics. Its incredible. Hats off.
@JosiahWarren
@JosiahWarren 3 жыл бұрын
Well done
@arghyachakraborty1151
@arghyachakraborty1151 2 жыл бұрын
excellent video
@AlessandroZir
@AlessandroZir Жыл бұрын
very good explanation! thank you very much; ❤❤❤
@IshanBanerjee
@IshanBanerjee 3 жыл бұрын
That's interesting sir
@bragzanma725
@bragzanma725 2 жыл бұрын
Platinium end
@AlessandroZir
@AlessandroZir 2 жыл бұрын
thanks! I liked the part of the cards; ❤❤🦊
@sdfdsf4162
@sdfdsf4162 Жыл бұрын
baza yobanaya
@dianadsouza7380
@dianadsouza7380 3 жыл бұрын
😷 MASK
@annaclarafenyo8185
@annaclarafenyo8185 Жыл бұрын
It's pronounced "tah-pology" not "tope-ology". It's a small error, but it reveals you've never spoken to a mathematician.
@paulpetricevic6949
@paulpetricevic6949 Жыл бұрын
boy what
@imperfect_analysis
@imperfect_analysis Жыл бұрын
Or that he's not studying math in the UK or the US Girl/boy what's your damn problem? Not all mathematicians are English language masters
@annaclarafenyo8185
@annaclarafenyo8185 Жыл бұрын
@@imperfect_analysis I know, just providing context so his video can improve. I had the same problems starting out, you know "Yoo-ler", "Ho-mo-to-py", etc. The comment is not mean spirited in intent.
@imperfect_analysis
@imperfect_analysis Жыл бұрын
@@annaclarafenyo8185 alright:) sorry if I sounded mean but you're right
@greenland8376
@greenland8376 9 ай бұрын
@@annaclarafenyo8185you cant just claim afterwards that it wasnt mean spirited when it clearly is. claiming that he „never spoke to a mathematician“ is dumb and hurtful. try better
The Yoneda Embedding Expresses Whether, What, How, Why
18:18
Math 4 Wisdom
Рет қаралды 8 М.
De Rham Cohomology: PART 1- THE IDEA
9:54
Rooney
Рет қаралды 21 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
Category Theory: An Introduction to Abstract Nonsense
14:51
Feynman's Chicken
Рет қаралды 71 М.
What is category theory?
10:32
Topos Institute
Рет қаралды 59 М.
The Elo Rating System
22:13
j3m
Рет қаралды 101 М.
27 Unhelpful Facts About Category Theory
9:26
Oliver Lugg
Рет қаралды 427 М.
John Baez: "Symmetric Monoidal Categories A Rosetta Stone"
28:42
Topos Institute
Рет қаралды 7 М.
Category Theory for Neuroscience (pure math to combat scientific stagnation)
32:16
Astonishing Hypothesis
Рет қаралды 104 М.
What is...the Yoneda lemma?
11:16
VisualMath
Рет қаралды 4,6 М.
The Mathematician's Weapon | Category Theory and Why We Care 1.0
22:07
What is the opposite of a set?
17:15
Sheafification of G
Рет қаралды 83 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН